Inzynierka/Lib/site-packages/pandas/tests/frame/methods/test_set_index.py
2023-06-02 12:51:02 +02:00

699 lines
25 KiB
Python

"""
See also: test_reindex.py:TestReindexSetIndex
"""
from datetime import (
datetime,
timedelta,
)
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Index,
MultiIndex,
Series,
date_range,
period_range,
to_datetime,
)
import pandas._testing as tm
class TestSetIndex:
def test_set_index_multiindex(self):
# segfault in GH#3308
d = {"t1": [2, 2.5, 3], "t2": [4, 5, 6]}
df = DataFrame(d)
tuples = [(0, 1), (0, 2), (1, 2)]
df["tuples"] = tuples
index = MultiIndex.from_tuples(df["tuples"])
# it works!
df.set_index(index)
def test_set_index_empty_column(self):
# GH#1971
df = DataFrame(
[
{"a": 1, "p": 0},
{"a": 2, "m": 10},
{"a": 3, "m": 11, "p": 20},
{"a": 4, "m": 12, "p": 21},
],
columns=["a", "m", "p", "x"],
)
result = df.set_index(["a", "x"])
expected = df[["m", "p"]]
expected.index = MultiIndex.from_arrays([df["a"], df["x"]], names=["a", "x"])
tm.assert_frame_equal(result, expected)
def test_set_index_empty_dataframe(self):
# GH#38419
df1 = DataFrame(
{"a": Series(dtype="datetime64[ns]"), "b": Series(dtype="int64"), "c": []}
)
df2 = df1.set_index(["a", "b"])
result = df2.index.to_frame().dtypes
expected = df1[["a", "b"]].dtypes
tm.assert_series_equal(result, expected)
def test_set_index_multiindexcolumns(self):
columns = MultiIndex.from_tuples([("foo", 1), ("foo", 2), ("bar", 1)])
df = DataFrame(np.random.randn(3, 3), columns=columns)
result = df.set_index(df.columns[0])
expected = df.iloc[:, 1:]
expected.index = df.iloc[:, 0].values
expected.index.names = [df.columns[0]]
tm.assert_frame_equal(result, expected)
def test_set_index_timezone(self):
# GH#12358
# tz-aware Series should retain the tz
idx = DatetimeIndex(["2014-01-01 10:10:10"], tz="UTC").tz_convert("Europe/Rome")
df = DataFrame({"A": idx})
assert df.set_index(idx).index[0].hour == 11
assert DatetimeIndex(Series(df.A))[0].hour == 11
assert df.set_index(df.A).index[0].hour == 11
def test_set_index_cast_datetimeindex(self):
df = DataFrame(
{
"A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)],
"B": np.random.randn(1000),
}
)
idf = df.set_index("A")
assert isinstance(idf.index, DatetimeIndex)
def test_set_index_dst(self):
di = date_range("2006-10-29 00:00:00", periods=3, freq="H", tz="US/Pacific")
df = DataFrame(data={"a": [0, 1, 2], "b": [3, 4, 5]}, index=di).reset_index()
# single level
res = df.set_index("index")
exp = DataFrame(
data={"a": [0, 1, 2], "b": [3, 4, 5]},
index=Index(di, name="index"),
)
exp.index = exp.index._with_freq(None)
tm.assert_frame_equal(res, exp)
# GH#12920
res = df.set_index(["index", "a"])
exp_index = MultiIndex.from_arrays([di, [0, 1, 2]], names=["index", "a"])
exp = DataFrame({"b": [3, 4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp)
def test_set_index(self, float_string_frame):
df = float_string_frame
idx = Index(np.arange(len(df))[::-1])
df = df.set_index(idx)
tm.assert_index_equal(df.index, idx)
with pytest.raises(ValueError, match="Length mismatch"):
df.set_index(idx[::2])
def test_set_index_names(self):
df = tm.makeDataFrame()
df.index.name = "name"
assert df.set_index(df.index).index.names == ["name"]
mi = MultiIndex.from_arrays(df[["A", "B"]].T.values, names=["A", "B"])
mi2 = MultiIndex.from_arrays(
df[["A", "B", "A", "B"]].T.values, names=["A", "B", "C", "D"]
)
df = df.set_index(["A", "B"])
assert df.set_index(df.index).index.names == ["A", "B"]
# Check that set_index isn't converting a MultiIndex into an Index
assert isinstance(df.set_index(df.index).index, MultiIndex)
# Check actual equality
tm.assert_index_equal(df.set_index(df.index).index, mi)
idx2 = df.index.rename(["C", "D"])
# Check that [MultiIndex, MultiIndex] yields a MultiIndex rather
# than a pair of tuples
assert isinstance(df.set_index([df.index, idx2]).index, MultiIndex)
# Check equality
tm.assert_index_equal(df.set_index([df.index, idx2]).index, mi2)
# A has duplicate values, C does not
@pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")])
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys):
df = frame_of_index_cols
if isinstance(keys, list):
idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys)
else:
idx = Index(df[keys], name=keys)
expected = df.drop(keys, axis=1) if drop else df
expected.index = idx
if inplace:
result = df.copy()
return_value = result.set_index(keys, drop=drop, inplace=True)
assert return_value is None
else:
result = df.set_index(keys, drop=drop)
tm.assert_frame_equal(result, expected)
# A has duplicate values, C does not
@pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")])
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_append(self, frame_of_index_cols, drop, keys):
df = frame_of_index_cols
keys = keys if isinstance(keys, list) else [keys]
idx = MultiIndex.from_arrays(
[df.index] + [df[x] for x in keys], names=[None] + keys
)
expected = df.drop(keys, axis=1) if drop else df.copy()
expected.index = idx
result = df.set_index(keys, drop=drop, append=True)
tm.assert_frame_equal(result, expected)
# A has duplicate values, C does not
@pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")])
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys):
# append to existing multiindex
df = frame_of_index_cols.set_index(["D"], drop=drop, append=True)
keys = keys if isinstance(keys, list) else [keys]
expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True)
result = df.set_index(keys, drop=drop, append=True)
tm.assert_frame_equal(result, expected)
def test_set_index_after_mutation(self):
# GH#1590
df = DataFrame({"val": [0, 1, 2], "key": ["a", "b", "c"]})
expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key"))
df2 = df.loc[df.index.map(lambda indx: indx >= 1)]
result = df2.set_index("key")
tm.assert_frame_equal(result, expected)
# MultiIndex constructor does not work directly on Series -> lambda
# Add list-of-list constructor because list is ambiguous -> lambda
# also test index name if append=True (name is duplicate here for B)
@pytest.mark.parametrize(
"box",
[
Series,
Index,
np.array,
list,
lambda x: [list(x)],
lambda x: MultiIndex.from_arrays([x]),
],
)
@pytest.mark.parametrize(
"append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)]
)
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_pass_single_array(
self, frame_of_index_cols, drop, append, index_name, box
):
df = frame_of_index_cols
df.index.name = index_name
key = box(df["B"])
if box == list:
# list of strings gets interpreted as list of keys
msg = "['one', 'two', 'three', 'one', 'two']"
with pytest.raises(KeyError, match=msg):
df.set_index(key, drop=drop, append=append)
else:
# np.array/list-of-list "forget" the name of B
name_mi = getattr(key, "names", None)
name = [getattr(key, "name", None)] if name_mi is None else name_mi
result = df.set_index(key, drop=drop, append=append)
# only valid column keys are dropped
# since B is always passed as array above, nothing is dropped
expected = df.set_index(["B"], drop=False, append=append)
expected.index.names = [index_name] + name if append else name
tm.assert_frame_equal(result, expected)
# MultiIndex constructor does not work directly on Series -> lambda
# also test index name if append=True (name is duplicate here for A & B)
@pytest.mark.parametrize(
"box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])]
)
@pytest.mark.parametrize(
"append, index_name",
[(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)],
)
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_pass_arrays(
self, frame_of_index_cols, drop, append, index_name, box
):
df = frame_of_index_cols
df.index.name = index_name
keys = ["A", box(df["B"])]
# np.array/list "forget" the name of B
names = ["A", None if box in [np.array, list, tuple, iter] else "B"]
result = df.set_index(keys, drop=drop, append=append)
# only valid column keys are dropped
# since B is always passed as array above, only A is dropped, if at all
expected = df.set_index(["A", "B"], drop=False, append=append)
expected = expected.drop("A", axis=1) if drop else expected
expected.index.names = [index_name] + names if append else names
tm.assert_frame_equal(result, expected)
# MultiIndex constructor does not work directly on Series -> lambda
# We also emulate a "constructor" for the label -> lambda
# also test index name if append=True (name is duplicate here for A)
@pytest.mark.parametrize(
"box2",
[
Series,
Index,
np.array,
list,
iter,
lambda x: MultiIndex.from_arrays([x]),
lambda x: x.name,
],
)
@pytest.mark.parametrize(
"box1",
[
Series,
Index,
np.array,
list,
iter,
lambda x: MultiIndex.from_arrays([x]),
lambda x: x.name,
],
)
@pytest.mark.parametrize(
"append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)]
)
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_pass_arrays_duplicate(
self, frame_of_index_cols, drop, append, index_name, box1, box2
):
df = frame_of_index_cols
df.index.name = index_name
keys = [box1(df["A"]), box2(df["A"])]
result = df.set_index(keys, drop=drop, append=append)
# if either box is iter, it has been consumed; re-read
keys = [box1(df["A"]), box2(df["A"])]
# need to adapt first drop for case that both keys are 'A' --
# cannot drop the same column twice;
# plain == would give ambiguous Boolean error for containers
first_drop = (
False
if (
isinstance(keys[0], str)
and keys[0] == "A"
and isinstance(keys[1], str)
and keys[1] == "A"
)
else drop
)
# to test against already-tested behaviour, we add sequentially,
# hence second append always True; must wrap keys in list, otherwise
# box = list would be interpreted as keys
expected = df.set_index([keys[0]], drop=first_drop, append=append)
expected = expected.set_index([keys[1]], drop=drop, append=True)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("append", [True, False])
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append):
df = frame_of_index_cols
keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"])
result = df.set_index(keys, drop=drop, append=append)
# setting with a MultiIndex will never drop columns
expected = df.set_index(["A", "B"], drop=False, append=append)
tm.assert_frame_equal(result, expected)
def test_construction_with_categorical_index(self):
ci = tm.makeCategoricalIndex(10)
ci.name = "B"
# with Categorical
df = DataFrame({"A": np.random.randn(10), "B": ci.values})
idf = df.set_index("B")
tm.assert_index_equal(idf.index, ci)
# from a CategoricalIndex
df = DataFrame({"A": np.random.randn(10), "B": ci})
idf = df.set_index("B")
tm.assert_index_equal(idf.index, ci)
# round-trip
idf = idf.reset_index().set_index("B")
tm.assert_index_equal(idf.index, ci)
def test_set_index_preserve_categorical_dtype(self):
# GH#13743, GH#13854
df = DataFrame(
{
"A": [1, 2, 1, 1, 2],
"B": [10, 16, 22, 28, 34],
"C1": Categorical(list("abaab"), categories=list("bac"), ordered=False),
"C2": Categorical(list("abaab"), categories=list("bac"), ordered=True),
}
)
for cols in ["C1", "C2", ["A", "C1"], ["A", "C2"], ["C1", "C2"]]:
result = df.set_index(cols).reset_index()
result = result.reindex(columns=df.columns)
tm.assert_frame_equal(result, df)
def test_set_index_datetime(self):
# GH#3950
df = DataFrame(
{
"label": ["a", "a", "a", "b", "b", "b"],
"datetime": [
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
],
"value": range(6),
}
)
df.index = to_datetime(df.pop("datetime"), utc=True)
df.index = df.index.tz_convert("US/Pacific")
expected = DatetimeIndex(
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
name="datetime",
)
expected = expected.tz_localize("UTC").tz_convert("US/Pacific")
df = df.set_index("label", append=True)
tm.assert_index_equal(df.index.levels[0], expected)
tm.assert_index_equal(df.index.levels[1], Index(["a", "b"], name="label"))
assert df.index.names == ["datetime", "label"]
df = df.swaplevel(0, 1)
tm.assert_index_equal(df.index.levels[0], Index(["a", "b"], name="label"))
tm.assert_index_equal(df.index.levels[1], expected)
assert df.index.names == ["label", "datetime"]
df = DataFrame(np.random.random(6))
idx1 = DatetimeIndex(
[
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
"2011-07-19 07:00:00",
"2011-07-19 08:00:00",
"2011-07-19 09:00:00",
],
tz="US/Eastern",
)
idx2 = DatetimeIndex(
[
"2012-04-01 09:00",
"2012-04-01 09:00",
"2012-04-01 09:00",
"2012-04-02 09:00",
"2012-04-02 09:00",
"2012-04-02 09:00",
],
tz="US/Eastern",
)
idx3 = date_range("2011-01-01 09:00", periods=6, tz="Asia/Tokyo")
idx3 = idx3._with_freq(None)
df = df.set_index(idx1)
df = df.set_index(idx2, append=True)
df = df.set_index(idx3, append=True)
expected1 = DatetimeIndex(
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
tz="US/Eastern",
)
expected2 = DatetimeIndex(
["2012-04-01 09:00", "2012-04-02 09:00"], tz="US/Eastern"
)
tm.assert_index_equal(df.index.levels[0], expected1)
tm.assert_index_equal(df.index.levels[1], expected2)
tm.assert_index_equal(df.index.levels[2], idx3)
# GH#7092
tm.assert_index_equal(df.index.get_level_values(0), idx1)
tm.assert_index_equal(df.index.get_level_values(1), idx2)
tm.assert_index_equal(df.index.get_level_values(2), idx3)
def test_set_index_period(self):
# GH#6631
df = DataFrame(np.random.random(6))
idx1 = period_range("2011-01-01", periods=3, freq="M")
idx1 = idx1.append(idx1)
idx2 = period_range("2013-01-01 09:00", periods=2, freq="H")
idx2 = idx2.append(idx2).append(idx2)
idx3 = period_range("2005", periods=6, freq="A")
df = df.set_index(idx1)
df = df.set_index(idx2, append=True)
df = df.set_index(idx3, append=True)
expected1 = period_range("2011-01-01", periods=3, freq="M")
expected2 = period_range("2013-01-01 09:00", periods=2, freq="H")
tm.assert_index_equal(df.index.levels[0], expected1)
tm.assert_index_equal(df.index.levels[1], expected2)
tm.assert_index_equal(df.index.levels[2], idx3)
tm.assert_index_equal(df.index.get_level_values(0), idx1)
tm.assert_index_equal(df.index.get_level_values(1), idx2)
tm.assert_index_equal(df.index.get_level_values(2), idx3)
class TestSetIndexInvalid:
def test_set_index_verify_integrity(self, frame_of_index_cols):
df = frame_of_index_cols
with pytest.raises(ValueError, match="Index has duplicate keys"):
df.set_index("A", verify_integrity=True)
# with MultiIndex
with pytest.raises(ValueError, match="Index has duplicate keys"):
df.set_index([df["A"], df["A"]], verify_integrity=True)
@pytest.mark.parametrize("append", [True, False])
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_raise_keys(self, frame_of_index_cols, drop, append):
df = frame_of_index_cols
with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"):
# column names are A-E, as well as one tuple
df.set_index(["foo", "bar", "baz"], drop=drop, append=append)
# non-existent key in list with arrays
with pytest.raises(KeyError, match="X"):
df.set_index([df["A"], df["B"], "X"], drop=drop, append=append)
msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]"
# tuples always raise KeyError
with pytest.raises(KeyError, match=msg):
df.set_index(tuple(df["A"]), drop=drop, append=append)
# also within a list
with pytest.raises(KeyError, match=msg):
df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append)
@pytest.mark.parametrize("append", [True, False])
@pytest.mark.parametrize("drop", [True, False])
@pytest.mark.parametrize("box", [set], ids=["set"])
def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append):
df = frame_of_index_cols
msg = 'The parameter "keys" may be a column key, .*'
# forbidden type, e.g. set
with pytest.raises(TypeError, match=msg):
df.set_index(box(df["A"]), drop=drop, append=append)
# forbidden type in list, e.g. set
with pytest.raises(TypeError, match=msg):
df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append)
# MultiIndex constructor does not work directly on Series -> lambda
@pytest.mark.parametrize(
"box",
[Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])],
ids=["Series", "Index", "np.array", "iter", "MultiIndex"],
)
@pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"])
@pytest.mark.parametrize("append", [True, False])
@pytest.mark.parametrize("drop", [True, False])
def test_set_index_raise_on_len(
self, frame_of_index_cols, box, length, drop, append
):
# GH 24984
df = frame_of_index_cols # has length 5
values = np.random.randint(0, 10, (length,))
msg = "Length mismatch: Expected 5 rows, received array of length.*"
# wrong length directly
with pytest.raises(ValueError, match=msg):
df.set_index(box(values), drop=drop, append=append)
# wrong length in list
with pytest.raises(ValueError, match=msg):
df.set_index(["A", df.A, box(values)], drop=drop, append=append)
class TestSetIndexCustomLabelType:
def test_set_index_custom_label_type(self):
# GH#24969
class Thing:
def __init__(self, name, color) -> None:
self.name = name
self.color = color
def __str__(self) -> str:
return f"<Thing {repr(self.name)}>"
# necessary for pretty KeyError
__repr__ = __str__
thing1 = Thing("One", "red")
thing2 = Thing("Two", "blue")
df = DataFrame({thing1: [0, 1], thing2: [2, 3]})
expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2))
# use custom label directly
result = df.set_index(thing2)
tm.assert_frame_equal(result, expected)
# custom label wrapped in list
result = df.set_index([thing2])
tm.assert_frame_equal(result, expected)
# missing key
thing3 = Thing("Three", "pink")
msg = "<Thing 'Three'>"
with pytest.raises(KeyError, match=msg):
# missing label directly
df.set_index(thing3)
with pytest.raises(KeyError, match=msg):
# missing label in list
df.set_index([thing3])
def test_set_index_custom_label_hashable_iterable(self):
# GH#24969
# actual example discussed in GH 24984 was e.g. for shapely.geometry
# objects (e.g. a collection of Points) that can be both hashable and
# iterable; using frozenset as a stand-in for testing here
class Thing(frozenset):
# need to stabilize repr for KeyError (due to random order in sets)
def __repr__(self) -> str:
tmp = sorted(self)
joined_reprs = ", ".join(map(repr, tmp))
# double curly brace prints one brace in format string
return f"frozenset({{{joined_reprs}}})"
thing1 = Thing(["One", "red"])
thing2 = Thing(["Two", "blue"])
df = DataFrame({thing1: [0, 1], thing2: [2, 3]})
expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2))
# use custom label directly
result = df.set_index(thing2)
tm.assert_frame_equal(result, expected)
# custom label wrapped in list
result = df.set_index([thing2])
tm.assert_frame_equal(result, expected)
# missing key
thing3 = Thing(["Three", "pink"])
msg = r"frozenset\(\{'Three', 'pink'\}\)"
with pytest.raises(KeyError, match=msg):
# missing label directly
df.set_index(thing3)
with pytest.raises(KeyError, match=msg):
# missing label in list
df.set_index([thing3])
def test_set_index_custom_label_type_raises(self):
# GH#24969
# purposefully inherit from something unhashable
class Thing(set):
def __init__(self, name, color) -> None:
self.name = name
self.color = color
def __str__(self) -> str:
return f"<Thing {repr(self.name)}>"
thing1 = Thing("One", "red")
thing2 = Thing("Two", "blue")
df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2])
msg = 'The parameter "keys" may be a column key, .*'
with pytest.raises(TypeError, match=msg):
# use custom label directly
df.set_index(thing2)
with pytest.raises(TypeError, match=msg):
# custom label wrapped in list
df.set_index([thing2])
def test_set_index_periodindex(self):
# GH#6631
df = DataFrame(np.random.random(6))
idx1 = period_range("2011/01/01", periods=6, freq="M")
idx2 = period_range("2013", periods=6, freq="A")
df = df.set_index(idx1)
tm.assert_index_equal(df.index, idx1)
df = df.set_index(idx2)
tm.assert_index_equal(df.index, idx2)