243 lines
7.9 KiB
Python
243 lines
7.9 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import NumbaUtilError
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
NamedAgg,
|
|
Series,
|
|
option_context,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_correct_function_signature():
|
|
def incorrect_function(x):
|
|
return sum(x) * 2.7
|
|
|
|
data = DataFrame(
|
|
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
|
columns=["key", "data"],
|
|
)
|
|
with pytest.raises(NumbaUtilError, match="The first 2"):
|
|
data.groupby("key").agg(incorrect_function, engine="numba")
|
|
|
|
with pytest.raises(NumbaUtilError, match="The first 2"):
|
|
data.groupby("key")["data"].agg(incorrect_function, engine="numba")
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_check_nopython_kwargs():
|
|
def incorrect_function(values, index):
|
|
return sum(values) * 2.7
|
|
|
|
data = DataFrame(
|
|
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
|
columns=["key", "data"],
|
|
)
|
|
with pytest.raises(NumbaUtilError, match="numba does not support"):
|
|
data.groupby("key").agg(incorrect_function, engine="numba", a=1)
|
|
|
|
with pytest.raises(NumbaUtilError, match="numba does not support"):
|
|
data.groupby("key")["data"].agg(incorrect_function, engine="numba", a=1)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
@pytest.mark.filterwarnings("ignore")
|
|
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
|
@pytest.mark.parametrize("jit", [True, False])
|
|
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
|
|
@pytest.mark.parametrize("as_index", [True, False])
|
|
def test_numba_vs_cython(jit, pandas_obj, nogil, parallel, nopython, as_index):
|
|
def func_numba(values, index):
|
|
return np.mean(values) * 2.7
|
|
|
|
if jit:
|
|
# Test accepted jitted functions
|
|
import numba
|
|
|
|
func_numba = numba.jit(func_numba)
|
|
|
|
data = DataFrame(
|
|
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
|
)
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
|
grouped = data.groupby(0, as_index=as_index)
|
|
if pandas_obj == "Series":
|
|
grouped = grouped[1]
|
|
|
|
result = grouped.agg(func_numba, engine="numba", engine_kwargs=engine_kwargs)
|
|
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
|
|
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
@pytest.mark.filterwarnings("ignore")
|
|
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
|
@pytest.mark.parametrize("jit", [True, False])
|
|
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
|
|
def test_cache(jit, pandas_obj, nogil, parallel, nopython):
|
|
# Test that the functions are cached correctly if we switch functions
|
|
def func_1(values, index):
|
|
return np.mean(values) - 3.4
|
|
|
|
def func_2(values, index):
|
|
return np.mean(values) * 2.7
|
|
|
|
if jit:
|
|
import numba
|
|
|
|
func_1 = numba.jit(func_1)
|
|
func_2 = numba.jit(func_2)
|
|
|
|
data = DataFrame(
|
|
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
|
)
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
|
grouped = data.groupby(0)
|
|
if pandas_obj == "Series":
|
|
grouped = grouped[1]
|
|
|
|
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
|
|
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
|
|
tm.assert_equal(result, expected)
|
|
|
|
# Add func_2 to the cache
|
|
result = grouped.agg(func_2, engine="numba", engine_kwargs=engine_kwargs)
|
|
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
|
|
tm.assert_equal(result, expected)
|
|
|
|
# Retest func_1 which should use the cache
|
|
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
|
|
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_use_global_config():
|
|
def func_1(values, index):
|
|
return np.mean(values) - 3.4
|
|
|
|
data = DataFrame(
|
|
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
|
)
|
|
grouped = data.groupby(0)
|
|
expected = grouped.agg(func_1, engine="numba")
|
|
with option_context("compute.use_numba", True):
|
|
result = grouped.agg(func_1, engine=None)
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
@pytest.mark.parametrize(
|
|
"agg_func",
|
|
[
|
|
["min", "max"],
|
|
"min",
|
|
{"B": ["min", "max"], "C": "sum"},
|
|
NamedAgg(column="B", aggfunc="min"),
|
|
],
|
|
)
|
|
def test_multifunc_notimplimented(agg_func):
|
|
data = DataFrame(
|
|
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
|
)
|
|
grouped = data.groupby(0)
|
|
with pytest.raises(NotImplementedError, match="Numba engine can"):
|
|
grouped.agg(agg_func, engine="numba")
|
|
|
|
with pytest.raises(NotImplementedError, match="Numba engine can"):
|
|
grouped[1].agg(agg_func, engine="numba")
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_args_not_cached():
|
|
# GH 41647
|
|
def sum_last(values, index, n):
|
|
return values[-n:].sum()
|
|
|
|
df = DataFrame({"id": [0, 0, 1, 1], "x": [1, 1, 1, 1]})
|
|
grouped_x = df.groupby("id")["x"]
|
|
result = grouped_x.agg(sum_last, 1, engine="numba")
|
|
expected = Series([1.0] * 2, name="x", index=Index([0, 1], name="id"))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = grouped_x.agg(sum_last, 2, engine="numba")
|
|
expected = Series([2.0] * 2, name="x", index=Index([0, 1], name="id"))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_index_data_correctly_passed():
|
|
# GH 43133
|
|
def f(values, index):
|
|
return np.mean(index)
|
|
|
|
df = DataFrame({"group": ["A", "A", "B"], "v": [4, 5, 6]}, index=[-1, -2, -3])
|
|
result = df.groupby("group").aggregate(f, engine="numba")
|
|
expected = DataFrame(
|
|
[-1.5, -3.0], columns=["v"], index=Index(["A", "B"], name="group")
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_engine_kwargs_not_cached():
|
|
# If the user passes a different set of engine_kwargs don't return the same
|
|
# jitted function
|
|
nogil = True
|
|
parallel = False
|
|
nopython = True
|
|
|
|
def func_kwargs(values, index):
|
|
return nogil + parallel + nopython
|
|
|
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
|
df = DataFrame({"value": [0, 0, 0]})
|
|
result = df.groupby(level=0).aggregate(
|
|
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
|
|
)
|
|
expected = DataFrame({"value": [2.0, 2.0, 2.0]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
nogil = False
|
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
|
result = df.groupby(level=0).aggregate(
|
|
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
|
|
)
|
|
expected = DataFrame({"value": [1.0, 1.0, 1.0]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
@pytest.mark.filterwarnings("ignore")
|
|
def test_multiindex_one_key(nogil, parallel, nopython):
|
|
def numba_func(values, index):
|
|
return 1
|
|
|
|
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
|
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
|
result = df.groupby("A").agg(
|
|
numba_func, engine="numba", engine_kwargs=engine_kwargs
|
|
)
|
|
expected = DataFrame([1.0], index=Index([1], name="A"), columns=["C"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_multiindex_multi_key_not_supported(nogil, parallel, nopython):
|
|
def numba_func(values, index):
|
|
return 1
|
|
|
|
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
|
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
|
with pytest.raises(NotImplementedError, match="More than 1 grouping labels"):
|
|
df.groupby(["A", "B"]).agg(
|
|
numba_func, engine="numba", engine_kwargs=engine_kwargs
|
|
)
|