398 lines
15 KiB
Python
398 lines
15 KiB
Python
import pytest
|
|
import numpy as np
|
|
from numpy import cos, sin, pi
|
|
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
|
|
assert_, suppress_warnings)
|
|
|
|
from scipy.integrate import (quadrature, romberg, romb, newton_cotes,
|
|
cumulative_trapezoid, cumtrapz, trapz, trapezoid,
|
|
quad, simpson, simps, fixed_quad, AccuracyWarning)
|
|
from scipy.integrate._quadrature import _qmc_quad as qmc_quad
|
|
from scipy import stats, special as sc
|
|
|
|
|
|
class TestFixedQuad:
|
|
def test_scalar(self):
|
|
n = 4
|
|
expected = 1/(2*n)
|
|
got, _ = fixed_quad(lambda x: x**(2*n - 1), 0, 1, n=n)
|
|
# quadrature exact for this input
|
|
assert_allclose(got, expected, rtol=1e-12)
|
|
|
|
def test_vector(self):
|
|
n = 4
|
|
p = np.arange(1, 2*n)
|
|
expected = 1/(p + 1)
|
|
got, _ = fixed_quad(lambda x: x**p[:, None], 0, 1, n=n)
|
|
assert_allclose(got, expected, rtol=1e-12)
|
|
|
|
|
|
class TestQuadrature:
|
|
def quad(self, x, a, b, args):
|
|
raise NotImplementedError
|
|
|
|
def test_quadrature(self):
|
|
# Typical function with two extra arguments:
|
|
def myfunc(x, n, z): # Bessel function integrand
|
|
return cos(n*x-z*sin(x))/pi
|
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8))
|
|
table_val = 0.30614353532540296487
|
|
assert_almost_equal(val, table_val, decimal=7)
|
|
|
|
def test_quadrature_rtol(self):
|
|
def myfunc(x, n, z): # Bessel function integrand
|
|
return 1e90 * cos(n*x-z*sin(x))/pi
|
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8), rtol=1e-10)
|
|
table_val = 1e90 * 0.30614353532540296487
|
|
assert_allclose(val, table_val, rtol=1e-10)
|
|
|
|
def test_quadrature_miniter(self):
|
|
# Typical function with two extra arguments:
|
|
def myfunc(x, n, z): # Bessel function integrand
|
|
return cos(n*x-z*sin(x))/pi
|
|
table_val = 0.30614353532540296487
|
|
for miniter in [5, 52]:
|
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8), miniter=miniter)
|
|
assert_almost_equal(val, table_val, decimal=7)
|
|
assert_(err < 1.0)
|
|
|
|
def test_quadrature_single_args(self):
|
|
def myfunc(x, n):
|
|
return 1e90 * cos(n*x-1.8*sin(x))/pi
|
|
val, err = quadrature(myfunc, 0, pi, args=2, rtol=1e-10)
|
|
table_val = 1e90 * 0.30614353532540296487
|
|
assert_allclose(val, table_val, rtol=1e-10)
|
|
|
|
def test_romberg(self):
|
|
# Typical function with two extra arguments:
|
|
def myfunc(x, n, z): # Bessel function integrand
|
|
return cos(n*x-z*sin(x))/pi
|
|
val = romberg(myfunc, 0, pi, args=(2, 1.8))
|
|
table_val = 0.30614353532540296487
|
|
assert_almost_equal(val, table_val, decimal=7)
|
|
|
|
def test_romberg_rtol(self):
|
|
# Typical function with two extra arguments:
|
|
def myfunc(x, n, z): # Bessel function integrand
|
|
return 1e19*cos(n*x-z*sin(x))/pi
|
|
val = romberg(myfunc, 0, pi, args=(2, 1.8), rtol=1e-10)
|
|
table_val = 1e19*0.30614353532540296487
|
|
assert_allclose(val, table_val, rtol=1e-10)
|
|
|
|
def test_romb(self):
|
|
assert_equal(romb(np.arange(17)), 128)
|
|
|
|
def test_romb_gh_3731(self):
|
|
# Check that romb makes maximal use of data points
|
|
x = np.arange(2**4+1)
|
|
y = np.cos(0.2*x)
|
|
val = romb(y)
|
|
val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
|
|
assert_allclose(val, val2, rtol=1e-8, atol=0)
|
|
|
|
# should be equal to romb with 2**k+1 samples
|
|
with suppress_warnings() as sup:
|
|
sup.filter(AccuracyWarning, "divmax .4. exceeded")
|
|
val3 = romberg(lambda x: np.cos(0.2*x), x.min(), x.max(), divmax=4)
|
|
assert_allclose(val, val3, rtol=1e-12, atol=0)
|
|
|
|
def test_non_dtype(self):
|
|
# Check that we work fine with functions returning float
|
|
import math
|
|
valmath = romberg(math.sin, 0, 1)
|
|
expected_val = 0.45969769413185085
|
|
assert_almost_equal(valmath, expected_val, decimal=7)
|
|
|
|
def test_newton_cotes(self):
|
|
"""Test the first few degrees, for evenly spaced points."""
|
|
n = 1
|
|
wts, errcoff = newton_cotes(n, 1)
|
|
assert_equal(wts, n*np.array([0.5, 0.5]))
|
|
assert_almost_equal(errcoff, -n**3/12.0)
|
|
|
|
n = 2
|
|
wts, errcoff = newton_cotes(n, 1)
|
|
assert_almost_equal(wts, n*np.array([1.0, 4.0, 1.0])/6.0)
|
|
assert_almost_equal(errcoff, -n**5/2880.0)
|
|
|
|
n = 3
|
|
wts, errcoff = newton_cotes(n, 1)
|
|
assert_almost_equal(wts, n*np.array([1.0, 3.0, 3.0, 1.0])/8.0)
|
|
assert_almost_equal(errcoff, -n**5/6480.0)
|
|
|
|
n = 4
|
|
wts, errcoff = newton_cotes(n, 1)
|
|
assert_almost_equal(wts, n*np.array([7.0, 32.0, 12.0, 32.0, 7.0])/90.0)
|
|
assert_almost_equal(errcoff, -n**7/1935360.0)
|
|
|
|
def test_newton_cotes2(self):
|
|
"""Test newton_cotes with points that are not evenly spaced."""
|
|
|
|
x = np.array([0.0, 1.5, 2.0])
|
|
y = x**2
|
|
wts, errcoff = newton_cotes(x)
|
|
exact_integral = 8.0/3
|
|
numeric_integral = np.dot(wts, y)
|
|
assert_almost_equal(numeric_integral, exact_integral)
|
|
|
|
x = np.array([0.0, 1.4, 2.1, 3.0])
|
|
y = x**2
|
|
wts, errcoff = newton_cotes(x)
|
|
exact_integral = 9.0
|
|
numeric_integral = np.dot(wts, y)
|
|
assert_almost_equal(numeric_integral, exact_integral)
|
|
|
|
def test_simpson(self):
|
|
y = np.arange(17)
|
|
assert_equal(simpson(y), 128)
|
|
assert_equal(simpson(y, dx=0.5), 64)
|
|
assert_equal(simpson(y, x=np.linspace(0, 4, 17)), 32)
|
|
|
|
y = np.arange(4)
|
|
x = 2**y
|
|
assert_equal(simpson(y, x=x, even='avg'), 13.875)
|
|
assert_equal(simpson(y, x=x, even='first'), 13.75)
|
|
assert_equal(simpson(y, x=x, even='last'), 14)
|
|
|
|
# Tests for checking base case
|
|
x = np.array([3])
|
|
y = np.power(x, 2)
|
|
assert_equal(simpson(y, x=x, axis=0), 0.0)
|
|
assert_equal(simpson(y, x=x, axis=-1), 0.0)
|
|
|
|
x = np.array([3, 3, 3, 3])
|
|
y = np.power(x, 2)
|
|
assert_equal(simpson(y, x=x, axis=0), 0.0)
|
|
assert_equal(simpson(y, x=x, axis=-1), 0.0)
|
|
|
|
x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]])
|
|
y = np.power(x, 2)
|
|
zero_axis = [0.0, 0.0, 0.0, 0.0]
|
|
default_axis = [175.75, 175.75, 175.75]
|
|
assert_equal(simpson(y, x=x, axis=0), zero_axis)
|
|
assert_equal(simpson(y, x=x, axis=-1), default_axis)
|
|
|
|
x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 8, 16, 32]])
|
|
y = np.power(x, 2)
|
|
zero_axis = [0.0, 136.0, 1088.0, 8704.0]
|
|
default_axis = [175.75, 175.75, 11292.25]
|
|
assert_equal(simpson(y, x=x, axis=0), zero_axis)
|
|
assert_equal(simpson(y, x=x, axis=-1), default_axis)
|
|
|
|
@pytest.mark.parametrize('droplast', [False, True])
|
|
def test_simpson_2d_integer_no_x(self, droplast):
|
|
# The inputs are 2d integer arrays. The results should be
|
|
# identical to the results when the inputs are floating point.
|
|
y = np.array([[2, 2, 4, 4, 8, 8, -4, 5],
|
|
[4, 4, 2, -4, 10, 22, -2, 10]])
|
|
if droplast:
|
|
y = y[:, :-1]
|
|
result = simpson(y, axis=-1)
|
|
expected = simpson(np.array(y, dtype=np.float64), axis=-1)
|
|
assert_equal(result, expected)
|
|
|
|
def test_simps(self):
|
|
# Basic coverage test for the alias
|
|
y = np.arange(4)
|
|
x = 2**y
|
|
assert_equal(simpson(y, x=x, dx=0.5, even='first'),
|
|
simps(y, x=x, dx=0.5, even='first'))
|
|
|
|
|
|
class TestCumulative_trapezoid:
|
|
def test_1d(self):
|
|
x = np.linspace(-2, 2, num=5)
|
|
y = x
|
|
y_int = cumulative_trapezoid(y, x, initial=0)
|
|
y_expected = [0., -1.5, -2., -1.5, 0.]
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
y_int = cumulative_trapezoid(y, x, initial=None)
|
|
assert_allclose(y_int, y_expected[1:])
|
|
|
|
def test_y_nd_x_nd(self):
|
|
x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
|
y = x
|
|
y_int = cumulative_trapezoid(y, x, initial=0)
|
|
y_expected = np.array([[[0., 0.5, 2., 4.5],
|
|
[0., 4.5, 10., 16.5]],
|
|
[[0., 8.5, 18., 28.5],
|
|
[0., 12.5, 26., 40.5]],
|
|
[[0., 16.5, 34., 52.5],
|
|
[0., 20.5, 42., 64.5]]])
|
|
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
# Try with all axes
|
|
shapes = [(2, 2, 4), (3, 1, 4), (3, 2, 3)]
|
|
for axis, shape in zip([0, 1, 2], shapes):
|
|
y_int = cumulative_trapezoid(y, x, initial=3.45, axis=axis)
|
|
assert_equal(y_int.shape, (3, 2, 4))
|
|
y_int = cumulative_trapezoid(y, x, initial=None, axis=axis)
|
|
assert_equal(y_int.shape, shape)
|
|
|
|
def test_y_nd_x_1d(self):
|
|
y = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
|
x = np.arange(4)**2
|
|
# Try with all axes
|
|
ys_expected = (
|
|
np.array([[[4., 5., 6., 7.],
|
|
[8., 9., 10., 11.]],
|
|
[[40., 44., 48., 52.],
|
|
[56., 60., 64., 68.]]]),
|
|
np.array([[[2., 3., 4., 5.]],
|
|
[[10., 11., 12., 13.]],
|
|
[[18., 19., 20., 21.]]]),
|
|
np.array([[[0.5, 5., 17.5],
|
|
[4.5, 21., 53.5]],
|
|
[[8.5, 37., 89.5],
|
|
[12.5, 53., 125.5]],
|
|
[[16.5, 69., 161.5],
|
|
[20.5, 85., 197.5]]]))
|
|
|
|
for axis, y_expected in zip([0, 1, 2], ys_expected):
|
|
y_int = cumulative_trapezoid(y, x=x[:y.shape[axis]], axis=axis,
|
|
initial=None)
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
def test_x_none(self):
|
|
y = np.linspace(-2, 2, num=5)
|
|
|
|
y_int = cumulative_trapezoid(y)
|
|
y_expected = [-1.5, -2., -1.5, 0.]
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
y_int = cumulative_trapezoid(y, initial=1.23)
|
|
y_expected = [1.23, -1.5, -2., -1.5, 0.]
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
y_int = cumulative_trapezoid(y, dx=3)
|
|
y_expected = [-4.5, -6., -4.5, 0.]
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
y_int = cumulative_trapezoid(y, dx=3, initial=1.23)
|
|
y_expected = [1.23, -4.5, -6., -4.5, 0.]
|
|
assert_allclose(y_int, y_expected)
|
|
|
|
def test_cumtrapz(self):
|
|
# Basic coverage test for the alias
|
|
x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
|
y = x
|
|
assert_allclose(cumulative_trapezoid(y, x, dx=0.5, axis=0, initial=0),
|
|
cumtrapz(y, x, dx=0.5, axis=0, initial=0),
|
|
rtol=1e-14)
|
|
|
|
|
|
class TestTrapezoid():
|
|
"""This function is tested in NumPy more extensive, just do some
|
|
basic due diligence here."""
|
|
def test_trapezoid(self):
|
|
y = np.arange(17)
|
|
assert_equal(trapezoid(y), 128)
|
|
assert_equal(trapezoid(y, dx=0.5), 64)
|
|
assert_equal(trapezoid(y, x=np.linspace(0, 4, 17)), 32)
|
|
|
|
y = np.arange(4)
|
|
x = 2**y
|
|
assert_equal(trapezoid(y, x=x, dx=0.1), 13.5)
|
|
|
|
def test_trapz(self):
|
|
# Basic coverage test for the alias
|
|
y = np.arange(4)
|
|
x = 2**y
|
|
assert_equal(trapezoid(y, x=x, dx=0.5, axis=0),
|
|
trapz(y, x=x, dx=0.5, axis=0))
|
|
|
|
|
|
class TestQMCQuad():
|
|
def test_input_validation(self):
|
|
message = "`func` must be callable."
|
|
with pytest.raises(TypeError, match=message):
|
|
qmc_quad("a duck", [0, 0], [1, 1])
|
|
|
|
message = "`func` must evaluate the integrand at points..."
|
|
with pytest.raises(ValueError, match=message):
|
|
qmc_quad(lambda: 1, [0, 0], [1, 1])
|
|
|
|
def func(x):
|
|
assert x.ndim == 1
|
|
return np.sum(x)
|
|
message = "Exception encountered when attempting vectorized call..."
|
|
with pytest.warns(UserWarning, match=message):
|
|
qmc_quad(func, [0, 0], [1, 1])
|
|
|
|
message = "`n_points` must be an integer."
|
|
with pytest.raises(TypeError, match=message):
|
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], n_points=1024.5)
|
|
|
|
message = "`n_estimates` must be an integer."
|
|
with pytest.raises(TypeError, match=message):
|
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], n_estimates=8.5)
|
|
|
|
message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
|
|
with pytest.raises(TypeError, match=message):
|
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng="a duck")
|
|
|
|
message = "`qrng` must be initialized with dimensionality equal to "
|
|
with pytest.raises(ValueError, match=message):
|
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng=stats.qmc.Sobol(1))
|
|
|
|
message = r"`log` must be boolean \(`True` or `False`\)."
|
|
with pytest.raises(TypeError, match=message):
|
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], log=10)
|
|
|
|
def basic_test(self, n_points=2**8, n_estimates=8, signs=np.ones(2)):
|
|
|
|
ndim = 2
|
|
mean = np.zeros(ndim)
|
|
cov = np.eye(ndim)
|
|
|
|
def func(x):
|
|
return stats.multivariate_normal.pdf(x, mean, cov)
|
|
|
|
rng = np.random.default_rng(2879434385674690281)
|
|
qrng = stats.qmc.Sobol(ndim, seed=rng)
|
|
a = np.zeros(ndim)
|
|
b = np.ones(ndim) * signs
|
|
res = qmc_quad(func, a, b, n_points=n_points,
|
|
n_estimates=n_estimates, args=(mean, cov), qrng=qrng)
|
|
ref = stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
|
|
atol = sc.stdtrit(n_estimates-1, 0.995) * res.standard_error # 99% CI
|
|
assert_allclose(res.integral, ref, atol=atol)
|
|
assert np.prod(signs)*res.integral > 0
|
|
|
|
rng = np.random.default_rng(2879434385674690281)
|
|
qrng = stats.qmc.Sobol(ndim, seed=rng)
|
|
logres = qmc_quad(lambda *args: np.log(func(*args)), a, b,
|
|
n_points=n_points, n_estimates=n_estimates,
|
|
args=(mean, cov), log=True, qrng=qrng)
|
|
assert_allclose(np.exp(logres.integral), res.integral)
|
|
assert np.imag(logres.integral) == (np.pi if np.prod(signs) < 0 else 0)
|
|
|
|
@pytest.mark.parametrize("n_points", [2**8, 2**12])
|
|
@pytest.mark.parametrize("n_estimates", [8, 16])
|
|
def test_basic(self, n_points, n_estimates):
|
|
self.basic_test(n_points, n_estimates)
|
|
|
|
@pytest.mark.parametrize("signs", [[1, 1], [-1, -1], [-1, 1], [1, -1]])
|
|
def test_sign(self, signs):
|
|
self.basic_test(signs=signs)
|
|
|
|
@pytest.mark.parametrize("log", [False, True])
|
|
def test_zero(self, log):
|
|
message = "A lower limit was equal to an upper limit, so"
|
|
with pytest.warns(UserWarning, match=message):
|
|
res = qmc_quad(lambda x: 1, [0, 0], [0, 1], log=log)
|
|
assert res.integral == (-np.inf if log else 0)
|
|
assert res.standard_error == 0
|
|
|
|
def test_flexible_input(self):
|
|
# check that qrng is not required
|
|
# also checks that for 1d problems, a and b can be scalars
|
|
def func(x):
|
|
return stats.norm.pdf(x, scale=2)
|
|
|
|
res = qmc_quad(func, 0, 1)
|
|
ref = stats.norm.cdf(1, scale=2) - stats.norm.cdf(0, scale=2)
|
|
assert_allclose(res.integral, ref, 1e-2)
|