Inzynierka/Lib/site-packages/scipy/optimize/_hessian_update_strategy.py
2023-06-02 12:51:02 +02:00

430 lines
16 KiB
Python

"""Hessian update strategies for quasi-Newton optimization methods."""
import numpy as np
from numpy.linalg import norm
from scipy.linalg import get_blas_funcs
from warnings import warn
__all__ = ['HessianUpdateStrategy', 'BFGS', 'SR1']
class HessianUpdateStrategy:
"""Interface for implementing Hessian update strategies.
Many optimization methods make use of Hessian (or inverse Hessian)
approximations, such as the quasi-Newton methods BFGS, SR1, L-BFGS.
Some of these approximations, however, do not actually need to store
the entire matrix or can compute the internal matrix product with a
given vector in a very efficiently manner. This class serves as an
abstract interface between the optimization algorithm and the
quasi-Newton update strategies, giving freedom of implementation
to store and update the internal matrix as efficiently as possible.
Different choices of initialization and update procedure will result
in different quasi-Newton strategies.
Four methods should be implemented in derived classes: ``initialize``,
``update``, ``dot`` and ``get_matrix``.
Notes
-----
Any instance of a class that implements this interface,
can be accepted by the method ``minimize`` and used by
the compatible solvers to approximate the Hessian (or
inverse Hessian) used by the optimization algorithms.
"""
def initialize(self, n, approx_type):
"""Initialize internal matrix.
Allocate internal memory for storing and updating
the Hessian or its inverse.
Parameters
----------
n : int
Problem dimension.
approx_type : {'hess', 'inv_hess'}
Selects either the Hessian or the inverse Hessian.
When set to 'hess' the Hessian will be stored and updated.
When set to 'inv_hess' its inverse will be used instead.
"""
raise NotImplementedError("The method ``initialize(n, approx_type)``"
" is not implemented.")
def update(self, delta_x, delta_grad):
"""Update internal matrix.
Update Hessian matrix or its inverse (depending on how 'approx_type'
is defined) using information about the last evaluated points.
Parameters
----------
delta_x : ndarray
The difference between two points the gradient
function have been evaluated at: ``delta_x = x2 - x1``.
delta_grad : ndarray
The difference between the gradients:
``delta_grad = grad(x2) - grad(x1)``.
"""
raise NotImplementedError("The method ``update(delta_x, delta_grad)``"
" is not implemented.")
def dot(self, p):
"""Compute the product of the internal matrix with the given vector.
Parameters
----------
p : array_like
1-D array representing a vector.
Returns
-------
Hp : array
1-D represents the result of multiplying the approximation matrix
by vector p.
"""
raise NotImplementedError("The method ``dot(p)``"
" is not implemented.")
def get_matrix(self):
"""Return current internal matrix.
Returns
-------
H : ndarray, shape (n, n)
Dense matrix containing either the Hessian
or its inverse (depending on how 'approx_type'
is defined).
"""
raise NotImplementedError("The method ``get_matrix(p)``"
" is not implemented.")
class FullHessianUpdateStrategy(HessianUpdateStrategy):
"""Hessian update strategy with full dimensional internal representation.
"""
_syr = get_blas_funcs('syr', dtype='d') # Symmetric rank 1 update
_syr2 = get_blas_funcs('syr2', dtype='d') # Symmetric rank 2 update
# Symmetric matrix-vector product
_symv = get_blas_funcs('symv', dtype='d')
def __init__(self, init_scale='auto'):
self.init_scale = init_scale
# Until initialize is called we can't really use the class,
# so it makes sense to set everything to None.
self.first_iteration = None
self.approx_type = None
self.B = None
self.H = None
def initialize(self, n, approx_type):
"""Initialize internal matrix.
Allocate internal memory for storing and updating
the Hessian or its inverse.
Parameters
----------
n : int
Problem dimension.
approx_type : {'hess', 'inv_hess'}
Selects either the Hessian or the inverse Hessian.
When set to 'hess' the Hessian will be stored and updated.
When set to 'inv_hess' its inverse will be used instead.
"""
self.first_iteration = True
self.n = n
self.approx_type = approx_type
if approx_type not in ('hess', 'inv_hess'):
raise ValueError("`approx_type` must be 'hess' or 'inv_hess'.")
# Create matrix
if self.approx_type == 'hess':
self.B = np.eye(n, dtype=float)
else:
self.H = np.eye(n, dtype=float)
def _auto_scale(self, delta_x, delta_grad):
# Heuristic to scale matrix at first iteration.
# Described in Nocedal and Wright "Numerical Optimization"
# p.143 formula (6.20).
s_norm2 = np.dot(delta_x, delta_x)
y_norm2 = np.dot(delta_grad, delta_grad)
ys = np.abs(np.dot(delta_grad, delta_x))
if ys == 0.0 or y_norm2 == 0 or s_norm2 == 0:
return 1
if self.approx_type == 'hess':
return y_norm2 / ys
else:
return ys / y_norm2
def _update_implementation(self, delta_x, delta_grad):
raise NotImplementedError("The method ``_update_implementation``"
" is not implemented.")
def update(self, delta_x, delta_grad):
"""Update internal matrix.
Update Hessian matrix or its inverse (depending on how 'approx_type'
is defined) using information about the last evaluated points.
Parameters
----------
delta_x : ndarray
The difference between two points the gradient
function have been evaluated at: ``delta_x = x2 - x1``.
delta_grad : ndarray
The difference between the gradients:
``delta_grad = grad(x2) - grad(x1)``.
"""
if np.all(delta_x == 0.0):
return
if np.all(delta_grad == 0.0):
warn('delta_grad == 0.0. Check if the approximated '
'function is linear. If the function is linear '
'better results can be obtained by defining the '
'Hessian as zero instead of using quasi-Newton '
'approximations.', UserWarning)
return
if self.first_iteration:
# Get user specific scale
if self.init_scale == "auto":
scale = self._auto_scale(delta_x, delta_grad)
else:
scale = float(self.init_scale)
# Scale initial matrix with ``scale * np.eye(n)``
if self.approx_type == 'hess':
self.B *= scale
else:
self.H *= scale
self.first_iteration = False
self._update_implementation(delta_x, delta_grad)
def dot(self, p):
"""Compute the product of the internal matrix with the given vector.
Parameters
----------
p : array_like
1-D array representing a vector.
Returns
-------
Hp : array
1-D represents the result of multiplying the approximation matrix
by vector p.
"""
if self.approx_type == 'hess':
return self._symv(1, self.B, p)
else:
return self._symv(1, self.H, p)
def get_matrix(self):
"""Return the current internal matrix.
Returns
-------
M : ndarray, shape (n, n)
Dense matrix containing either the Hessian or its inverse
(depending on how `approx_type` was defined).
"""
if self.approx_type == 'hess':
M = np.copy(self.B)
else:
M = np.copy(self.H)
li = np.tril_indices_from(M, k=-1)
M[li] = M.T[li]
return M
class BFGS(FullHessianUpdateStrategy):
"""Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.
Parameters
----------
exception_strategy : {'skip_update', 'damp_update'}, optional
Define how to proceed when the curvature condition is violated.
Set it to 'skip_update' to just skip the update. Or, alternatively,
set it to 'damp_update' to interpolate between the actual BFGS
result and the unmodified matrix. Both exceptions strategies
are explained in [1]_, p.536-537.
min_curvature : float
This number, scaled by a normalization factor, defines the
minimum curvature ``dot(delta_grad, delta_x)`` allowed to go
unaffected by the exception strategy. By default is equal to
1e-8 when ``exception_strategy = 'skip_update'`` and equal
to 0.2 when ``exception_strategy = 'damp_update'``.
init_scale : {float, 'auto'}
Matrix scale at first iteration. At the first
iteration the Hessian matrix or its inverse will be initialized
with ``init_scale*np.eye(n)``, where ``n`` is the problem dimension.
Set it to 'auto' in order to use an automatic heuristic for choosing
the initial scale. The heuristic is described in [1]_, p.143.
By default uses 'auto'.
Notes
-----
The update is based on the description in [1]_, p.140.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
def __init__(self, exception_strategy='skip_update', min_curvature=None,
init_scale='auto'):
if exception_strategy == 'skip_update':
if min_curvature is not None:
self.min_curvature = min_curvature
else:
self.min_curvature = 1e-8
elif exception_strategy == 'damp_update':
if min_curvature is not None:
self.min_curvature = min_curvature
else:
self.min_curvature = 0.2
else:
raise ValueError("`exception_strategy` must be 'skip_update' "
"or 'damp_update'.")
super().__init__(init_scale)
self.exception_strategy = exception_strategy
def _update_inverse_hessian(self, ys, Hy, yHy, s):
"""Update the inverse Hessian matrix.
BFGS update using the formula:
``H <- H + ((H*y).T*y + s.T*y)/(s.T*y)^2 * (s*s.T)
- 1/(s.T*y) * ((H*y)*s.T + s*(H*y).T)``
where ``s = delta_x`` and ``y = delta_grad``. This formula is
equivalent to (6.17) in [1]_ written in a more efficient way
for implementation.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
self.H = self._syr2(-1.0 / ys, s, Hy, a=self.H)
self.H = self._syr((ys+yHy)/ys**2, s, a=self.H)
def _update_hessian(self, ys, Bs, sBs, y):
"""Update the Hessian matrix.
BFGS update using the formula:
``B <- B - (B*s)*(B*s).T/s.T*(B*s) + y*y^T/s.T*y``
where ``s`` is short for ``delta_x`` and ``y`` is short
for ``delta_grad``. Formula (6.19) in [1]_.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
self.B = self._syr(1.0 / ys, y, a=self.B)
self.B = self._syr(-1.0 / sBs, Bs, a=self.B)
def _update_implementation(self, delta_x, delta_grad):
# Auxiliary variables w and z
if self.approx_type == 'hess':
w = delta_x
z = delta_grad
else:
w = delta_grad
z = delta_x
# Do some common operations
wz = np.dot(w, z)
Mw = self.dot(w)
wMw = Mw.dot(w)
# Guarantee that wMw > 0 by reinitializing matrix.
# While this is always true in exact arithmetics,
# indefinite matrix may appear due to roundoff errors.
if wMw <= 0.0:
scale = self._auto_scale(delta_x, delta_grad)
# Reinitialize matrix
if self.approx_type == 'hess':
self.B = scale * np.eye(self.n, dtype=float)
else:
self.H = scale * np.eye(self.n, dtype=float)
# Do common operations for new matrix
Mw = self.dot(w)
wMw = Mw.dot(w)
# Check if curvature condition is violated
if wz <= self.min_curvature * wMw:
# If the option 'skip_update' is set
# we just skip the update when the condion
# is violated.
if self.exception_strategy == 'skip_update':
return
# If the option 'damp_update' is set we
# interpolate between the actual BFGS
# result and the unmodified matrix.
elif self.exception_strategy == 'damp_update':
update_factor = (1-self.min_curvature) / (1 - wz/wMw)
z = update_factor*z + (1-update_factor)*Mw
wz = np.dot(w, z)
# Update matrix
if self.approx_type == 'hess':
self._update_hessian(wz, Mw, wMw, z)
else:
self._update_inverse_hessian(wz, Mw, wMw, z)
class SR1(FullHessianUpdateStrategy):
"""Symmetric-rank-1 Hessian update strategy.
Parameters
----------
min_denominator : float
This number, scaled by a normalization factor,
defines the minimum denominator magnitude allowed
in the update. When the condition is violated we skip
the update. By default uses ``1e-8``.
init_scale : {float, 'auto'}, optional
Matrix scale at first iteration. At the first
iteration the Hessian matrix or its inverse will be initialized
with ``init_scale*np.eye(n)``, where ``n`` is the problem dimension.
Set it to 'auto' in order to use an automatic heuristic for choosing
the initial scale. The heuristic is described in [1]_, p.143.
By default uses 'auto'.
Notes
-----
The update is based on the description in [1]_, p.144-146.
References
----------
.. [1] Nocedal, Jorge, and Stephen J. Wright. "Numerical optimization"
Second Edition (2006).
"""
def __init__(self, min_denominator=1e-8, init_scale='auto'):
self.min_denominator = min_denominator
super().__init__(init_scale)
def _update_implementation(self, delta_x, delta_grad):
# Auxiliary variables w and z
if self.approx_type == 'hess':
w = delta_x
z = delta_grad
else:
w = delta_grad
z = delta_x
# Do some common operations
Mw = self.dot(w)
z_minus_Mw = z - Mw
denominator = np.dot(w, z_minus_Mw)
# If the denominator is too small
# we just skip the update.
if np.abs(denominator) <= self.min_denominator*norm(w)*norm(z_minus_Mw):
return
# Update matrix
if self.approx_type == 'hess':
self.B = self._syr(1/denominator, z_minus_Mw, a=self.B)
else:
self.H = self._syr(1/denominator, z_minus_Mw, a=self.H)