567 lines
20 KiB
Python
567 lines
20 KiB
Python
import pytest
|
|
from scipy.stats import (betabinom, hypergeom, nhypergeom, bernoulli,
|
|
boltzmann, skellam, zipf, zipfian, binom, nbinom,
|
|
nchypergeom_fisher, nchypergeom_wallenius, randint)
|
|
|
|
import numpy as np
|
|
from numpy.testing import (
|
|
assert_almost_equal, assert_equal, assert_allclose, suppress_warnings
|
|
)
|
|
from scipy.special import binom as special_binom
|
|
from scipy.optimize import root_scalar
|
|
from scipy.integrate import quad
|
|
|
|
|
|
# The expected values were computed with Wolfram Alpha, using
|
|
# the expression CDF[HypergeometricDistribution[N, n, M], k].
|
|
@pytest.mark.parametrize('k, M, n, N, expected, rtol',
|
|
[(3, 10, 4, 5,
|
|
0.9761904761904762, 1e-15),
|
|
(107, 10000, 3000, 215,
|
|
0.9999999997226765, 1e-15),
|
|
(10, 10000, 3000, 215,
|
|
2.681682217692179e-21, 5e-11)])
|
|
def test_hypergeom_cdf(k, M, n, N, expected, rtol):
|
|
p = hypergeom.cdf(k, M, n, N)
|
|
assert_allclose(p, expected, rtol=rtol)
|
|
|
|
|
|
# The expected values were computed with Wolfram Alpha, using
|
|
# the expression SurvivalFunction[HypergeometricDistribution[N, n, M], k].
|
|
@pytest.mark.parametrize('k, M, n, N, expected, rtol',
|
|
[(25, 10000, 3000, 215,
|
|
0.9999999999052958, 1e-15),
|
|
(125, 10000, 3000, 215,
|
|
1.4416781705752128e-18, 5e-11)])
|
|
def test_hypergeom_sf(k, M, n, N, expected, rtol):
|
|
p = hypergeom.sf(k, M, n, N)
|
|
assert_allclose(p, expected, rtol=rtol)
|
|
|
|
|
|
def test_hypergeom_logpmf():
|
|
# symmetries test
|
|
# f(k,N,K,n) = f(n-k,N,N-K,n) = f(K-k,N,K,N-n) = f(k,N,n,K)
|
|
k = 5
|
|
N = 50
|
|
K = 10
|
|
n = 5
|
|
logpmf1 = hypergeom.logpmf(k, N, K, n)
|
|
logpmf2 = hypergeom.logpmf(n - k, N, N - K, n)
|
|
logpmf3 = hypergeom.logpmf(K - k, N, K, N - n)
|
|
logpmf4 = hypergeom.logpmf(k, N, n, K)
|
|
assert_almost_equal(logpmf1, logpmf2, decimal=12)
|
|
assert_almost_equal(logpmf1, logpmf3, decimal=12)
|
|
assert_almost_equal(logpmf1, logpmf4, decimal=12)
|
|
|
|
# test related distribution
|
|
# Bernoulli distribution if n = 1
|
|
k = 1
|
|
N = 10
|
|
K = 7
|
|
n = 1
|
|
hypergeom_logpmf = hypergeom.logpmf(k, N, K, n)
|
|
bernoulli_logpmf = bernoulli.logpmf(k, K/N)
|
|
assert_almost_equal(hypergeom_logpmf, bernoulli_logpmf, decimal=12)
|
|
|
|
|
|
def test_nhypergeom_pmf():
|
|
# test with hypergeom
|
|
M, n, r = 45, 13, 8
|
|
k = 6
|
|
NHG = nhypergeom.pmf(k, M, n, r)
|
|
HG = hypergeom.pmf(k, M, n, k+r-1) * (M - n - (r-1)) / (M - (k+r-1))
|
|
assert_allclose(HG, NHG, rtol=1e-10)
|
|
|
|
|
|
def test_nhypergeom_pmfcdf():
|
|
# test pmf and cdf with arbitrary values.
|
|
M = 8
|
|
n = 3
|
|
r = 4
|
|
support = np.arange(n+1)
|
|
pmf = nhypergeom.pmf(support, M, n, r)
|
|
cdf = nhypergeom.cdf(support, M, n, r)
|
|
assert_allclose(pmf, [1/14, 3/14, 5/14, 5/14], rtol=1e-13)
|
|
assert_allclose(cdf, [1/14, 4/14, 9/14, 1.0], rtol=1e-13)
|
|
|
|
|
|
def test_nhypergeom_r0():
|
|
# test with `r = 0`.
|
|
M = 10
|
|
n = 3
|
|
r = 0
|
|
pmf = nhypergeom.pmf([[0, 1, 2, 0], [1, 2, 0, 3]], M, n, r)
|
|
assert_allclose(pmf, [[1, 0, 0, 1], [0, 0, 1, 0]], rtol=1e-13)
|
|
|
|
|
|
def test_nhypergeom_rvs_shape():
|
|
# Check that when given a size with more dimensions than the
|
|
# dimensions of the broadcast parameters, rvs returns an array
|
|
# with the correct shape.
|
|
x = nhypergeom.rvs(22, [7, 8, 9], [[12], [13]], size=(5, 1, 2, 3))
|
|
assert x.shape == (5, 1, 2, 3)
|
|
|
|
|
|
def test_nhypergeom_accuracy():
|
|
# Check that nhypergeom.rvs post-gh-13431 gives the same values as
|
|
# inverse transform sampling
|
|
np.random.seed(0)
|
|
x = nhypergeom.rvs(22, 7, 11, size=100)
|
|
np.random.seed(0)
|
|
p = np.random.uniform(size=100)
|
|
y = nhypergeom.ppf(p, 22, 7, 11)
|
|
assert_equal(x, y)
|
|
|
|
|
|
def test_boltzmann_upper_bound():
|
|
k = np.arange(-3, 5)
|
|
|
|
N = 1
|
|
p = boltzmann.pmf(k, 0.123, N)
|
|
expected = k == 0
|
|
assert_equal(p, expected)
|
|
|
|
lam = np.log(2)
|
|
N = 3
|
|
p = boltzmann.pmf(k, lam, N)
|
|
expected = [0, 0, 0, 4/7, 2/7, 1/7, 0, 0]
|
|
assert_allclose(p, expected, rtol=1e-13)
|
|
|
|
c = boltzmann.cdf(k, lam, N)
|
|
expected = [0, 0, 0, 4/7, 6/7, 1, 1, 1]
|
|
assert_allclose(c, expected, rtol=1e-13)
|
|
|
|
|
|
def test_betabinom_a_and_b_unity():
|
|
# test limiting case that betabinom(n, 1, 1) is a discrete uniform
|
|
# distribution from 0 to n
|
|
n = 20
|
|
k = np.arange(n + 1)
|
|
p = betabinom(n, 1, 1).pmf(k)
|
|
expected = np.repeat(1 / (n + 1), n + 1)
|
|
assert_almost_equal(p, expected)
|
|
|
|
|
|
def test_betabinom_bernoulli():
|
|
# test limiting case that betabinom(1, a, b) = bernoulli(a / (a + b))
|
|
a = 2.3
|
|
b = 0.63
|
|
k = np.arange(2)
|
|
p = betabinom(1, a, b).pmf(k)
|
|
expected = bernoulli(a / (a + b)).pmf(k)
|
|
assert_almost_equal(p, expected)
|
|
|
|
|
|
def test_issue_10317():
|
|
alpha, n, p = 0.9, 10, 1
|
|
assert_equal(nbinom.interval(confidence=alpha, n=n, p=p), (0, 0))
|
|
|
|
|
|
def test_issue_11134():
|
|
alpha, n, p = 0.95, 10, 0
|
|
assert_equal(binom.interval(confidence=alpha, n=n, p=p), (0, 0))
|
|
|
|
|
|
def test_issue_7406():
|
|
np.random.seed(0)
|
|
assert_equal(binom.ppf(np.random.rand(10), 0, 0.5), 0)
|
|
|
|
# Also check that endpoints (q=0, q=1) are correct
|
|
assert_equal(binom.ppf(0, 0, 0.5), -1)
|
|
assert_equal(binom.ppf(1, 0, 0.5), 0)
|
|
|
|
|
|
def test_issue_5122():
|
|
p = 0
|
|
n = np.random.randint(100, size=10)
|
|
|
|
x = 0
|
|
ppf = binom.ppf(x, n, p)
|
|
assert_equal(ppf, -1)
|
|
|
|
x = np.linspace(0.01, 0.99, 10)
|
|
ppf = binom.ppf(x, n, p)
|
|
assert_equal(ppf, 0)
|
|
|
|
x = 1
|
|
ppf = binom.ppf(x, n, p)
|
|
assert_equal(ppf, n)
|
|
|
|
|
|
def test_issue_1603():
|
|
assert_equal(binom(1000, np.logspace(-3, -100)).ppf(0.01), 0)
|
|
|
|
|
|
def test_issue_5503():
|
|
p = 0.5
|
|
x = np.logspace(3, 14, 12)
|
|
assert_allclose(binom.cdf(x, 2*x, p), 0.5, atol=1e-2)
|
|
|
|
|
|
@pytest.mark.parametrize('x, n, p, cdf_desired', [
|
|
(300, 1000, 3/10, 0.51559351981411995636),
|
|
(3000, 10000, 3/10, 0.50493298381929698016),
|
|
(30000, 100000, 3/10, 0.50156000591726422864),
|
|
(300000, 1000000, 3/10, 0.50049331906666960038),
|
|
(3000000, 10000000, 3/10, 0.50015600124585261196),
|
|
(30000000, 100000000, 3/10, 0.50004933192735230102),
|
|
(30010000, 100000000, 3/10, 0.98545384016570790717),
|
|
(29990000, 100000000, 3/10, 0.01455017177985268670),
|
|
(29950000, 100000000, 3/10, 5.02250963487432024943e-28),
|
|
])
|
|
def test_issue_5503pt2(x, n, p, cdf_desired):
|
|
assert_allclose(binom.cdf(x, n, p), cdf_desired)
|
|
|
|
|
|
def test_issue_5503pt3():
|
|
# From Wolfram Alpha: CDF[BinomialDistribution[1e12, 1e-12], 2]
|
|
assert_allclose(binom.cdf(2, 10**12, 10**-12), 0.91969860292869777384)
|
|
|
|
|
|
def test_issue_6682():
|
|
# Reference value from R:
|
|
# options(digits=16)
|
|
# print(pnbinom(250, 50, 32/63, lower.tail=FALSE))
|
|
assert_allclose(nbinom.sf(250, 50, 32./63.), 1.460458510976452e-35)
|
|
|
|
|
|
def test_boost_divide_by_zero_issue_15101():
|
|
n = 1000
|
|
p = 0.01
|
|
k = 996
|
|
assert_allclose(binom.pmf(k, n, p), 0.0)
|
|
|
|
|
|
@pytest.mark.filterwarnings('ignore::RuntimeWarning')
|
|
def test_skellam_gh11474():
|
|
# test issue reported in gh-11474 caused by `cdfchn`
|
|
mu = [1, 10, 100, 1000, 5000, 5050, 5100, 5250, 6000]
|
|
cdf = skellam.cdf(0, mu, mu)
|
|
# generated in R
|
|
# library(skellam)
|
|
# options(digits = 16)
|
|
# mu = c(1, 10, 100, 1000, 5000, 5050, 5100, 5250, 6000)
|
|
# pskellam(0, mu, mu, TRUE)
|
|
cdf_expected = [0.6542541612768356, 0.5448901559424127, 0.5141135799745580,
|
|
0.5044605891382528, 0.5019947363350450, 0.5019848365953181,
|
|
0.5019750827993392, 0.5019466621805060, 0.5018209330219539]
|
|
assert_allclose(cdf, cdf_expected)
|
|
|
|
|
|
class TestZipfian:
|
|
def test_zipfian_asymptotic(self):
|
|
# test limiting case that zipfian(a, n) -> zipf(a) as n-> oo
|
|
a = 6.5
|
|
N = 10000000
|
|
k = np.arange(1, 21)
|
|
assert_allclose(zipfian.pmf(k, a, N), zipf.pmf(k, a))
|
|
assert_allclose(zipfian.cdf(k, a, N), zipf.cdf(k, a))
|
|
assert_allclose(zipfian.sf(k, a, N), zipf.sf(k, a))
|
|
assert_allclose(zipfian.stats(a, N, moments='msvk'),
|
|
zipf.stats(a, moments='msvk'))
|
|
|
|
def test_zipfian_continuity(self):
|
|
# test that zipfian(0.999999, n) ~ zipfian(1.000001, n)
|
|
# (a = 1 switches between methods of calculating harmonic sum)
|
|
alt1, agt1 = 0.99999999, 1.00000001
|
|
N = 30
|
|
k = np.arange(1, N + 1)
|
|
assert_allclose(zipfian.pmf(k, alt1, N), zipfian.pmf(k, agt1, N),
|
|
rtol=5e-7)
|
|
assert_allclose(zipfian.cdf(k, alt1, N), zipfian.cdf(k, agt1, N),
|
|
rtol=5e-7)
|
|
assert_allclose(zipfian.sf(k, alt1, N), zipfian.sf(k, agt1, N),
|
|
rtol=5e-7)
|
|
assert_allclose(zipfian.stats(alt1, N, moments='msvk'),
|
|
zipfian.stats(agt1, N, moments='msvk'), rtol=5e-7)
|
|
|
|
def test_zipfian_R(self):
|
|
# test against R VGAM package
|
|
# library(VGAM)
|
|
# k <- c(13, 16, 1, 4, 4, 8, 10, 19, 5, 7)
|
|
# a <- c(1.56712977, 3.72656295, 5.77665117, 9.12168729, 5.79977172,
|
|
# 4.92784796, 9.36078764, 4.3739616 , 7.48171872, 4.6824154)
|
|
# n <- c(70, 80, 48, 65, 83, 89, 50, 30, 20, 20)
|
|
# pmf <- dzipf(k, N = n, shape = a)
|
|
# cdf <- pzipf(k, N = n, shape = a)
|
|
# print(pmf)
|
|
# print(cdf)
|
|
np.random.seed(0)
|
|
k = np.random.randint(1, 20, size=10)
|
|
a = np.random.rand(10)*10 + 1
|
|
n = np.random.randint(1, 100, size=10)
|
|
pmf = [8.076972e-03, 2.950214e-05, 9.799333e-01, 3.216601e-06,
|
|
3.158895e-04, 3.412497e-05, 4.350472e-10, 2.405773e-06,
|
|
5.860662e-06, 1.053948e-04]
|
|
cdf = [0.8964133, 0.9998666, 0.9799333, 0.9999995, 0.9998584,
|
|
0.9999458, 1.0000000, 0.9999920, 0.9999977, 0.9998498]
|
|
# skip the first point; zipUC is not accurate for low a, n
|
|
assert_allclose(zipfian.pmf(k, a, n)[1:], pmf[1:], rtol=1e-6)
|
|
assert_allclose(zipfian.cdf(k, a, n)[1:], cdf[1:], rtol=5e-5)
|
|
|
|
np.random.seed(0)
|
|
naive_tests = np.vstack((np.logspace(-2, 1, 10),
|
|
np.random.randint(2, 40, 10))).T
|
|
|
|
@pytest.mark.parametrize("a, n", naive_tests)
|
|
def test_zipfian_naive(self, a, n):
|
|
# test against bare-bones implementation
|
|
|
|
@np.vectorize
|
|
def Hns(n, s):
|
|
"""Naive implementation of harmonic sum"""
|
|
return (1/np.arange(1, n+1)**s).sum()
|
|
|
|
@np.vectorize
|
|
def pzip(k, a, n):
|
|
"""Naive implementation of zipfian pmf"""
|
|
if k < 1 or k > n:
|
|
return 0.
|
|
else:
|
|
return 1 / k**a / Hns(n, a)
|
|
|
|
k = np.arange(n+1)
|
|
pmf = pzip(k, a, n)
|
|
cdf = np.cumsum(pmf)
|
|
mean = np.average(k, weights=pmf)
|
|
var = np.average((k - mean)**2, weights=pmf)
|
|
std = var**0.5
|
|
skew = np.average(((k-mean)/std)**3, weights=pmf)
|
|
kurtosis = np.average(((k-mean)/std)**4, weights=pmf) - 3
|
|
assert_allclose(zipfian.pmf(k, a, n), pmf)
|
|
assert_allclose(zipfian.cdf(k, a, n), cdf)
|
|
assert_allclose(zipfian.stats(a, n, moments="mvsk"),
|
|
[mean, var, skew, kurtosis])
|
|
|
|
|
|
class TestNCH():
|
|
np.random.seed(2) # seeds 0 and 1 had some xl = xu; randint failed
|
|
shape = (2, 4, 3)
|
|
max_m = 100
|
|
m1 = np.random.randint(1, max_m, size=shape) # red balls
|
|
m2 = np.random.randint(1, max_m, size=shape) # white balls
|
|
N = m1 + m2 # total balls
|
|
n = randint.rvs(0, N, size=N.shape) # number of draws
|
|
xl = np.maximum(0, n-m2) # lower bound of support
|
|
xu = np.minimum(n, m1) # upper bound of support
|
|
x = randint.rvs(xl, xu, size=xl.shape)
|
|
odds = np.random.rand(*x.shape)*2
|
|
|
|
# test output is more readable when function names (strings) are passed
|
|
@pytest.mark.parametrize('dist_name',
|
|
['nchypergeom_fisher', 'nchypergeom_wallenius'])
|
|
def test_nch_hypergeom(self, dist_name):
|
|
# Both noncentral hypergeometric distributions reduce to the
|
|
# hypergeometric distribution when odds = 1
|
|
dists = {'nchypergeom_fisher': nchypergeom_fisher,
|
|
'nchypergeom_wallenius': nchypergeom_wallenius}
|
|
dist = dists[dist_name]
|
|
x, N, m1, n = self.x, self.N, self.m1, self.n
|
|
assert_allclose(dist.pmf(x, N, m1, n, odds=1),
|
|
hypergeom.pmf(x, N, m1, n))
|
|
|
|
def test_nchypergeom_fisher_naive(self):
|
|
# test against a very simple implementation
|
|
x, N, m1, n, odds = self.x, self.N, self.m1, self.n, self.odds
|
|
|
|
@np.vectorize
|
|
def pmf_mean_var(x, N, m1, n, w):
|
|
# simple implementation of nchypergeom_fisher pmf
|
|
m2 = N - m1
|
|
xl = np.maximum(0, n-m2)
|
|
xu = np.minimum(n, m1)
|
|
|
|
def f(x):
|
|
t1 = special_binom(m1, x)
|
|
t2 = special_binom(m2, n - x)
|
|
return t1 * t2 * w**x
|
|
|
|
def P(k):
|
|
return sum((f(y)*y**k for y in range(xl, xu + 1)))
|
|
|
|
P0 = P(0)
|
|
P1 = P(1)
|
|
P2 = P(2)
|
|
pmf = f(x) / P0
|
|
mean = P1 / P0
|
|
var = P2 / P0 - (P1 / P0)**2
|
|
return pmf, mean, var
|
|
|
|
pmf, mean, var = pmf_mean_var(x, N, m1, n, odds)
|
|
assert_allclose(nchypergeom_fisher.pmf(x, N, m1, n, odds), pmf)
|
|
assert_allclose(nchypergeom_fisher.stats(N, m1, n, odds, moments='m'),
|
|
mean)
|
|
assert_allclose(nchypergeom_fisher.stats(N, m1, n, odds, moments='v'),
|
|
var)
|
|
|
|
def test_nchypergeom_wallenius_naive(self):
|
|
# test against a very simple implementation
|
|
|
|
np.random.seed(2)
|
|
shape = (2, 4, 3)
|
|
max_m = 100
|
|
m1 = np.random.randint(1, max_m, size=shape)
|
|
m2 = np.random.randint(1, max_m, size=shape)
|
|
N = m1 + m2
|
|
n = randint.rvs(0, N, size=N.shape)
|
|
xl = np.maximum(0, n-m2)
|
|
xu = np.minimum(n, m1)
|
|
x = randint.rvs(xl, xu, size=xl.shape)
|
|
w = np.random.rand(*x.shape)*2
|
|
|
|
def support(N, m1, n, w):
|
|
m2 = N - m1
|
|
xl = np.maximum(0, n-m2)
|
|
xu = np.minimum(n, m1)
|
|
return xl, xu
|
|
|
|
@np.vectorize
|
|
def mean(N, m1, n, w):
|
|
m2 = N - m1
|
|
xl, xu = support(N, m1, n, w)
|
|
|
|
def fun(u):
|
|
return u/m1 + (1 - (n-u)/m2)**w - 1
|
|
|
|
return root_scalar(fun, bracket=(xl, xu)).root
|
|
|
|
with suppress_warnings() as sup:
|
|
sup.filter(RuntimeWarning,
|
|
message="invalid value encountered in mean")
|
|
assert_allclose(nchypergeom_wallenius.mean(N, m1, n, w),
|
|
mean(N, m1, n, w), rtol=2e-2)
|
|
|
|
@np.vectorize
|
|
def variance(N, m1, n, w):
|
|
m2 = N - m1
|
|
u = mean(N, m1, n, w)
|
|
a = u * (m1 - u)
|
|
b = (n-u)*(u + m2 - n)
|
|
return N*a*b / ((N-1) * (m1*b + m2*a))
|
|
|
|
with suppress_warnings() as sup:
|
|
sup.filter(RuntimeWarning,
|
|
message="invalid value encountered in mean")
|
|
assert_allclose(
|
|
nchypergeom_wallenius.stats(N, m1, n, w, moments='v'),
|
|
variance(N, m1, n, w),
|
|
rtol=5e-2
|
|
)
|
|
|
|
@np.vectorize
|
|
def pmf(x, N, m1, n, w):
|
|
m2 = N - m1
|
|
xl, xu = support(N, m1, n, w)
|
|
|
|
def integrand(t):
|
|
D = w*(m1 - x) + (m2 - (n-x))
|
|
res = (1-t**(w/D))**x * (1-t**(1/D))**(n-x)
|
|
return res
|
|
|
|
def f(x):
|
|
t1 = special_binom(m1, x)
|
|
t2 = special_binom(m2, n - x)
|
|
the_integral = quad(integrand, 0, 1,
|
|
epsrel=1e-16, epsabs=1e-16)
|
|
return t1 * t2 * the_integral[0]
|
|
|
|
return f(x)
|
|
|
|
pmf0 = pmf(x, N, m1, n, w)
|
|
pmf1 = nchypergeom_wallenius.pmf(x, N, m1, n, w)
|
|
|
|
atol, rtol = 1e-6, 1e-6
|
|
i = np.abs(pmf1 - pmf0) < atol + rtol*np.abs(pmf0)
|
|
assert i.sum() > np.prod(shape) / 2 # works at least half the time
|
|
|
|
# for those that fail, discredit the naive implementation
|
|
for N, m1, n, w in zip(N[~i], m1[~i], n[~i], w[~i]):
|
|
# get the support
|
|
m2 = N - m1
|
|
xl, xu = support(N, m1, n, w)
|
|
x = np.arange(xl, xu + 1)
|
|
|
|
# calculate sum of pmf over the support
|
|
# the naive implementation is very wrong in these cases
|
|
assert pmf(x, N, m1, n, w).sum() < .5
|
|
assert_allclose(nchypergeom_wallenius.pmf(x, N, m1, n, w).sum(), 1)
|
|
|
|
def test_wallenius_against_mpmath(self):
|
|
# precompute data with mpmath since naive implementation above
|
|
# is not reliable. See source code in gh-13330.
|
|
M = 50
|
|
n = 30
|
|
N = 20
|
|
odds = 2.25
|
|
# Expected results, computed with mpmath.
|
|
sup = np.arange(21)
|
|
pmf = np.array([3.699003068656875e-20,
|
|
5.89398584245431e-17,
|
|
2.1594437742911123e-14,
|
|
3.221458044649955e-12,
|
|
2.4658279241205077e-10,
|
|
1.0965862603981212e-08,
|
|
3.057890479665704e-07,
|
|
5.622818831643761e-06,
|
|
7.056482841531681e-05,
|
|
0.000618899425358671,
|
|
0.003854172932571669,
|
|
0.01720592676256026,
|
|
0.05528844897093792,
|
|
0.12772363313574242,
|
|
0.21065898367825722,
|
|
0.24465958845359234,
|
|
0.1955114898110033,
|
|
0.10355390084949237,
|
|
0.03414490375225675,
|
|
0.006231989845775931,
|
|
0.0004715577304677075])
|
|
mean = 14.808018384813426
|
|
var = 2.6085975877923717
|
|
|
|
# nchypergeom_wallenius.pmf returns 0 for pmf(0) and pmf(1), and pmf(2)
|
|
# has only three digits of accuracy (~ 2.1511e-14).
|
|
assert_allclose(nchypergeom_wallenius.pmf(sup, M, n, N, odds), pmf,
|
|
rtol=1e-13, atol=1e-13)
|
|
assert_allclose(nchypergeom_wallenius.mean(M, n, N, odds),
|
|
mean, rtol=1e-13)
|
|
assert_allclose(nchypergeom_wallenius.var(M, n, N, odds),
|
|
var, rtol=1e-11)
|
|
|
|
@pytest.mark.parametrize('dist_name',
|
|
['nchypergeom_fisher', 'nchypergeom_wallenius'])
|
|
def test_rvs_shape(self, dist_name):
|
|
# Check that when given a size with more dimensions than the
|
|
# dimensions of the broadcast parameters, rvs returns an array
|
|
# with the correct shape.
|
|
dists = {'nchypergeom_fisher': nchypergeom_fisher,
|
|
'nchypergeom_wallenius': nchypergeom_wallenius}
|
|
dist = dists[dist_name]
|
|
x = dist.rvs(50, 30, [[10], [20]], [0.5, 1.0, 2.0], size=(5, 1, 2, 3))
|
|
assert x.shape == (5, 1, 2, 3)
|
|
|
|
|
|
@pytest.mark.parametrize("mu, q, expected",
|
|
[[10, 120, -1.240089881791596e-38],
|
|
[1500, 0, -86.61466680572661]])
|
|
def test_nbinom_11465(mu, q, expected):
|
|
# test nbinom.logcdf at extreme tails
|
|
size = 20
|
|
n, p = size, size/(size+mu)
|
|
# In R:
|
|
# options(digits=16)
|
|
# pnbinom(mu=10, size=20, q=120, log.p=TRUE)
|
|
assert_allclose(nbinom.logcdf(q, n, p), expected)
|
|
|
|
|
|
def test_gh_17146():
|
|
# Check that discrete distributions return PMF of zero at non-integral x.
|
|
# See gh-17146.
|
|
x = np.linspace(0, 1, 11)
|
|
p = 0.8
|
|
pmf = bernoulli(p).pmf(x)
|
|
i = (x % 1 == 0)
|
|
assert_allclose(pmf[-1], p)
|
|
assert_allclose(pmf[0], 1-p)
|
|
assert_equal(pmf[~i], 0)
|