1162 lines
41 KiB
Python
1162 lines
41 KiB
Python
import pickle
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_allclose, assert_array_equal
|
|
import pytest
|
|
from pytest import approx
|
|
from scipy.optimize import (
|
|
minimize,
|
|
minimize_scalar,
|
|
newton,
|
|
LinearConstraint,
|
|
)
|
|
from scipy.special import logsumexp
|
|
|
|
from sklearn._loss.link import _inclusive_low_high, IdentityLink
|
|
from sklearn._loss.loss import (
|
|
_LOSSES,
|
|
BaseLoss,
|
|
AbsoluteError,
|
|
HalfBinomialLoss,
|
|
HalfGammaLoss,
|
|
HalfMultinomialLoss,
|
|
HalfPoissonLoss,
|
|
HalfSquaredError,
|
|
HalfTweedieLoss,
|
|
HalfTweedieLossIdentity,
|
|
PinballLoss,
|
|
)
|
|
from sklearn.utils import assert_all_finite
|
|
from sklearn.utils._testing import create_memmap_backed_data, skip_if_32bit
|
|
|
|
|
|
ALL_LOSSES = list(_LOSSES.values())
|
|
|
|
LOSS_INSTANCES = [loss() for loss in ALL_LOSSES]
|
|
# HalfTweedieLoss(power=1.5) is already there as default
|
|
LOSS_INSTANCES += [
|
|
PinballLoss(quantile=0.25),
|
|
HalfTweedieLoss(power=-1.5),
|
|
HalfTweedieLoss(power=0),
|
|
HalfTweedieLoss(power=1),
|
|
HalfTweedieLoss(power=2),
|
|
HalfTweedieLoss(power=3.0),
|
|
HalfTweedieLossIdentity(power=0),
|
|
HalfTweedieLossIdentity(power=1),
|
|
HalfTweedieLossIdentity(power=2),
|
|
HalfTweedieLossIdentity(power=3.0),
|
|
]
|
|
|
|
|
|
def loss_instance_name(param):
|
|
if isinstance(param, BaseLoss):
|
|
loss = param
|
|
name = loss.__class__.__name__
|
|
if hasattr(loss, "quantile"):
|
|
name += f"(quantile={loss.closs.quantile})"
|
|
elif hasattr(loss, "power"):
|
|
name += f"(power={loss.closs.power})"
|
|
return name
|
|
else:
|
|
return str(param)
|
|
|
|
|
|
def random_y_true_raw_prediction(
|
|
loss, n_samples, y_bound=(-100, 100), raw_bound=(-5, 5), seed=42
|
|
):
|
|
"""Random generate y_true and raw_prediction in valid range."""
|
|
rng = np.random.RandomState(seed)
|
|
if loss.is_multiclass:
|
|
raw_prediction = np.empty((n_samples, loss.n_classes))
|
|
raw_prediction.flat[:] = rng.uniform(
|
|
low=raw_bound[0],
|
|
high=raw_bound[1],
|
|
size=n_samples * loss.n_classes,
|
|
)
|
|
y_true = np.arange(n_samples).astype(float) % loss.n_classes
|
|
else:
|
|
# If link is identity, we must respect the interval of y_pred:
|
|
if isinstance(loss.link, IdentityLink):
|
|
low, high = _inclusive_low_high(loss.interval_y_pred)
|
|
low = np.amax([low, raw_bound[0]])
|
|
high = np.amin([high, raw_bound[1]])
|
|
raw_bound = (low, high)
|
|
raw_prediction = rng.uniform(
|
|
low=raw_bound[0], high=raw_bound[1], size=n_samples
|
|
)
|
|
# generate a y_true in valid range
|
|
low, high = _inclusive_low_high(loss.interval_y_true)
|
|
low = max(low, y_bound[0])
|
|
high = min(high, y_bound[1])
|
|
y_true = rng.uniform(low, high, size=n_samples)
|
|
# set some values at special boundaries
|
|
if loss.interval_y_true.low == 0 and loss.interval_y_true.low_inclusive:
|
|
y_true[:: (n_samples // 3)] = 0
|
|
if loss.interval_y_true.high == 1 and loss.interval_y_true.high_inclusive:
|
|
y_true[1 :: (n_samples // 3)] = 1
|
|
|
|
return y_true, raw_prediction
|
|
|
|
|
|
def numerical_derivative(func, x, eps):
|
|
"""Helper function for numerical (first) derivatives."""
|
|
# For numerical derivatives, see
|
|
# https://en.wikipedia.org/wiki/Numerical_differentiation
|
|
# https://en.wikipedia.org/wiki/Finite_difference_coefficient
|
|
# We use central finite differences of accuracy 4.
|
|
h = np.full_like(x, fill_value=eps)
|
|
f_minus_2h = func(x - 2 * h)
|
|
f_minus_1h = func(x - h)
|
|
f_plus_1h = func(x + h)
|
|
f_plus_2h = func(x + 2 * h)
|
|
return (-f_plus_2h + 8 * f_plus_1h - 8 * f_minus_1h + f_minus_2h) / (12.0 * eps)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
def test_loss_boundary(loss):
|
|
"""Test interval ranges of y_true and y_pred in losses."""
|
|
# make sure low and high are always within the interval, used for linspace
|
|
if loss.is_multiclass:
|
|
y_true = np.linspace(0, 9, num=10)
|
|
else:
|
|
low, high = _inclusive_low_high(loss.interval_y_true)
|
|
y_true = np.linspace(low, high, num=10)
|
|
|
|
# add boundaries if they are included
|
|
if loss.interval_y_true.low_inclusive:
|
|
y_true = np.r_[y_true, loss.interval_y_true.low]
|
|
if loss.interval_y_true.high_inclusive:
|
|
y_true = np.r_[y_true, loss.interval_y_true.high]
|
|
|
|
assert loss.in_y_true_range(y_true)
|
|
|
|
n = y_true.shape[0]
|
|
low, high = _inclusive_low_high(loss.interval_y_pred)
|
|
if loss.is_multiclass:
|
|
y_pred = np.empty((n, 3))
|
|
y_pred[:, 0] = np.linspace(low, high, num=n)
|
|
y_pred[:, 1] = 0.5 * (1 - y_pred[:, 0])
|
|
y_pred[:, 2] = 0.5 * (1 - y_pred[:, 0])
|
|
else:
|
|
y_pred = np.linspace(low, high, num=n)
|
|
|
|
assert loss.in_y_pred_range(y_pred)
|
|
|
|
# calculating losses should not fail
|
|
raw_prediction = loss.link.link(y_pred)
|
|
loss.loss(y_true=y_true, raw_prediction=raw_prediction)
|
|
|
|
|
|
# Fixture to test valid value ranges.
|
|
Y_COMMON_PARAMS = [
|
|
# (loss, [y success], [y fail])
|
|
(HalfSquaredError(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
|
(AbsoluteError(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
|
(PinballLoss(), [-100, 0, 0.1, 100], [-np.inf, np.inf]),
|
|
(HalfPoissonLoss(), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
|
|
(HalfGammaLoss(), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
|
(HalfTweedieLoss(power=-3), [0.1, 100], [-np.inf, np.inf]),
|
|
(HalfTweedieLoss(power=0), [0.1, 100], [-np.inf, np.inf]),
|
|
(HalfTweedieLoss(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
|
|
(HalfTweedieLoss(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
|
(HalfTweedieLoss(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
|
(HalfTweedieLossIdentity(power=-3), [0.1, 100], [-np.inf, np.inf]),
|
|
(HalfTweedieLossIdentity(power=0), [-3, -0.1, 0, 0.1, 100], [-np.inf, np.inf]),
|
|
(HalfTweedieLossIdentity(power=1.5), [0.1, 100], [-np.inf, -3, -0.1, np.inf]),
|
|
(HalfTweedieLossIdentity(power=2), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
|
(HalfTweedieLossIdentity(power=3), [0.1, 100], [-np.inf, -3, -0.1, 0, np.inf]),
|
|
(HalfBinomialLoss(), [0.1, 0.5, 0.9], [-np.inf, -1, 2, np.inf]),
|
|
(HalfMultinomialLoss(), [], [-np.inf, -1, 1.1, np.inf]),
|
|
]
|
|
# y_pred and y_true do not always have the same domain (valid value range).
|
|
# Hence, we define extra sets of parameters for each of them.
|
|
Y_TRUE_PARAMS = [ # type: ignore
|
|
# (loss, [y success], [y fail])
|
|
(HalfPoissonLoss(), [0], []),
|
|
(HalfTweedieLoss(power=-3), [-100, -0.1, 0], []),
|
|
(HalfTweedieLoss(power=0), [-100, 0], []),
|
|
(HalfTweedieLoss(power=1.5), [0], []),
|
|
(HalfTweedieLossIdentity(power=-3), [-100, -0.1, 0], []),
|
|
(HalfTweedieLossIdentity(power=0), [-100, 0], []),
|
|
(HalfTweedieLossIdentity(power=1.5), [0], []),
|
|
(HalfBinomialLoss(), [0, 1], []),
|
|
(HalfMultinomialLoss(), [0.0, 1.0, 2], []),
|
|
]
|
|
Y_PRED_PARAMS = [
|
|
# (loss, [y success], [y fail])
|
|
(HalfPoissonLoss(), [], [0]),
|
|
(HalfTweedieLoss(power=-3), [], [-3, -0.1, 0]),
|
|
(HalfTweedieLoss(power=0), [], [-3, -0.1, 0]),
|
|
(HalfTweedieLoss(power=1.5), [], [0]),
|
|
(HalfTweedieLossIdentity(power=-3), [], [-3, -0.1, 0]),
|
|
(HalfTweedieLossIdentity(power=0), [-3, -0.1, 0], []),
|
|
(HalfTweedieLossIdentity(power=1.5), [], [0]),
|
|
(HalfBinomialLoss(), [], [0, 1]),
|
|
(HalfMultinomialLoss(), [0.1, 0.5], [0, 1]),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss, y_true_success, y_true_fail", Y_COMMON_PARAMS + Y_TRUE_PARAMS
|
|
)
|
|
def test_loss_boundary_y_true(loss, y_true_success, y_true_fail):
|
|
"""Test boundaries of y_true for loss functions."""
|
|
for y in y_true_success:
|
|
assert loss.in_y_true_range(np.array([y]))
|
|
for y in y_true_fail:
|
|
assert not loss.in_y_true_range(np.array([y]))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss, y_pred_success, y_pred_fail", Y_COMMON_PARAMS + Y_PRED_PARAMS # type: ignore
|
|
)
|
|
def test_loss_boundary_y_pred(loss, y_pred_success, y_pred_fail):
|
|
"""Test boundaries of y_pred for loss functions."""
|
|
for y in y_pred_success:
|
|
assert loss.in_y_pred_range(np.array([y]))
|
|
for y in y_pred_fail:
|
|
assert not loss.in_y_pred_range(np.array([y]))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss, y_true, raw_prediction, loss_true",
|
|
[
|
|
(HalfSquaredError(), 1.0, 5.0, 8),
|
|
(AbsoluteError(), 1.0, 5.0, 4),
|
|
(PinballLoss(quantile=0.5), 1.0, 5.0, 2),
|
|
(PinballLoss(quantile=0.25), 1.0, 5.0, 4 * (1 - 0.25)),
|
|
(PinballLoss(quantile=0.25), 5.0, 1.0, 4 * 0.25),
|
|
(HalfPoissonLoss(), 2.0, np.log(4), 4 - 2 * np.log(4)),
|
|
(HalfGammaLoss(), 2.0, np.log(4), np.log(4) + 2 / 4),
|
|
(HalfTweedieLoss(power=3), 2.0, np.log(4), -1 / 4 + 1 / 4**2),
|
|
(HalfTweedieLossIdentity(power=1), 2.0, 4.0, 2 - 2 * np.log(2)),
|
|
(HalfTweedieLossIdentity(power=2), 2.0, 4.0, np.log(2) - 1 / 2),
|
|
(HalfTweedieLossIdentity(power=3), 2.0, 4.0, -1 / 4 + 1 / 4**2 + 1 / 2 / 2),
|
|
(HalfBinomialLoss(), 0.25, np.log(4), np.log(5) - 0.25 * np.log(4)),
|
|
(
|
|
HalfMultinomialLoss(n_classes=3),
|
|
0.0,
|
|
[0.2, 0.5, 0.3],
|
|
logsumexp([0.2, 0.5, 0.3]) - 0.2,
|
|
),
|
|
(
|
|
HalfMultinomialLoss(n_classes=3),
|
|
1.0,
|
|
[0.2, 0.5, 0.3],
|
|
logsumexp([0.2, 0.5, 0.3]) - 0.5,
|
|
),
|
|
(
|
|
HalfMultinomialLoss(n_classes=3),
|
|
2.0,
|
|
[0.2, 0.5, 0.3],
|
|
logsumexp([0.2, 0.5, 0.3]) - 0.3,
|
|
),
|
|
],
|
|
ids=loss_instance_name,
|
|
)
|
|
def test_loss_on_specific_values(loss, y_true, raw_prediction, loss_true):
|
|
"""Test losses at specific values."""
|
|
assert loss(
|
|
y_true=np.array([y_true]), raw_prediction=np.array([raw_prediction])
|
|
) == approx(loss_true, rel=1e-11, abs=1e-12)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", ALL_LOSSES)
|
|
@pytest.mark.parametrize("readonly_memmap", [False, True])
|
|
@pytest.mark.parametrize("dtype_in", [np.float32, np.float64])
|
|
@pytest.mark.parametrize("dtype_out", [np.float32, np.float64])
|
|
@pytest.mark.parametrize("sample_weight", [None, 1])
|
|
@pytest.mark.parametrize("out1", [None, 1])
|
|
@pytest.mark.parametrize("out2", [None, 1])
|
|
@pytest.mark.parametrize("n_threads", [1, 2])
|
|
def test_loss_dtype(
|
|
loss, readonly_memmap, dtype_in, dtype_out, sample_weight, out1, out2, n_threads
|
|
):
|
|
"""Test acceptance of dtypes, readonly and writeable arrays in loss functions.
|
|
|
|
Check that loss accepts if all input arrays are either all float32 or all
|
|
float64, and all output arrays are either all float32 or all float64.
|
|
|
|
Also check that input arrays can be readonly, e.g. memory mapped.
|
|
"""
|
|
loss = loss()
|
|
# generate a y_true and raw_prediction in valid range
|
|
n_samples = 5
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=n_samples,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-10, 10),
|
|
seed=42,
|
|
)
|
|
y_true = y_true.astype(dtype_in)
|
|
raw_prediction = raw_prediction.astype(dtype_in)
|
|
|
|
if sample_weight is not None:
|
|
sample_weight = np.array([2.0] * n_samples, dtype=dtype_in)
|
|
if out1 is not None:
|
|
out1 = np.empty_like(y_true, dtype=dtype_out)
|
|
if out2 is not None:
|
|
out2 = np.empty_like(raw_prediction, dtype=dtype_out)
|
|
|
|
if readonly_memmap:
|
|
y_true = create_memmap_backed_data(y_true, aligned=True)
|
|
raw_prediction = create_memmap_backed_data(raw_prediction, aligned=True)
|
|
if sample_weight is not None:
|
|
sample_weight = create_memmap_backed_data(sample_weight, aligned=True)
|
|
|
|
loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out1,
|
|
n_threads=n_threads,
|
|
)
|
|
loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out2,
|
|
n_threads=n_threads,
|
|
)
|
|
loss.loss_gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out1,
|
|
gradient_out=out2,
|
|
n_threads=n_threads,
|
|
)
|
|
if out1 is not None and loss.is_multiclass:
|
|
out1 = np.empty_like(raw_prediction, dtype=dtype_out)
|
|
loss.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out1,
|
|
hessian_out=out2,
|
|
n_threads=n_threads,
|
|
)
|
|
loss(y_true=y_true, raw_prediction=raw_prediction, sample_weight=sample_weight)
|
|
loss.fit_intercept_only(y_true=y_true, sample_weight=sample_weight)
|
|
loss.constant_to_optimal_zero(y_true=y_true, sample_weight=sample_weight)
|
|
if hasattr(loss, "predict_proba"):
|
|
loss.predict_proba(raw_prediction=raw_prediction)
|
|
if hasattr(loss, "gradient_proba"):
|
|
loss.gradient_proba(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out1,
|
|
proba_out=out2,
|
|
n_threads=n_threads,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
|
def test_loss_same_as_C_functions(loss, sample_weight):
|
|
"""Test that Python and Cython functions return same results."""
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=20,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-10, 10),
|
|
seed=42,
|
|
)
|
|
if sample_weight == "range":
|
|
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
|
|
|
out_l1 = np.empty_like(y_true)
|
|
out_l2 = np.empty_like(y_true)
|
|
out_g1 = np.empty_like(raw_prediction)
|
|
out_g2 = np.empty_like(raw_prediction)
|
|
out_h1 = np.empty_like(raw_prediction)
|
|
out_h2 = np.empty_like(raw_prediction)
|
|
assert_allclose(
|
|
loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out_l1,
|
|
),
|
|
loss.closs.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out_l2,
|
|
),
|
|
)
|
|
assert_allclose(
|
|
loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g1,
|
|
),
|
|
loss.closs.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g2,
|
|
),
|
|
)
|
|
loss.closs.loss_gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out_l1,
|
|
gradient_out=out_g1,
|
|
)
|
|
loss.closs.loss_gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out_l2,
|
|
gradient_out=out_g2,
|
|
)
|
|
assert_allclose(out_l1, out_l2)
|
|
assert_allclose(out_g1, out_g2)
|
|
loss.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g1,
|
|
hessian_out=out_h1,
|
|
)
|
|
loss.closs.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g2,
|
|
hessian_out=out_h2,
|
|
)
|
|
assert_allclose(out_g1, out_g2)
|
|
assert_allclose(out_h1, out_h2)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
|
def test_loss_gradients_are_the_same(loss, sample_weight, global_random_seed):
|
|
"""Test that loss and gradient are the same across different functions.
|
|
|
|
Also test that output arguments contain correct results.
|
|
"""
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=20,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-10, 10),
|
|
seed=global_random_seed,
|
|
)
|
|
if sample_weight == "range":
|
|
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
|
|
|
out_l1 = np.empty_like(y_true)
|
|
out_l2 = np.empty_like(y_true)
|
|
out_g1 = np.empty_like(raw_prediction)
|
|
out_g2 = np.empty_like(raw_prediction)
|
|
out_g3 = np.empty_like(raw_prediction)
|
|
out_h3 = np.empty_like(raw_prediction)
|
|
|
|
l1 = loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out_l1,
|
|
)
|
|
g1 = loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g1,
|
|
)
|
|
l2, g2 = loss.loss_gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
loss_out=out_l2,
|
|
gradient_out=out_g2,
|
|
)
|
|
g3, h3 = loss.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g3,
|
|
hessian_out=out_h3,
|
|
)
|
|
assert_allclose(l1, l2)
|
|
assert_array_equal(l1, out_l1)
|
|
assert np.shares_memory(l1, out_l1)
|
|
assert_array_equal(l2, out_l2)
|
|
assert np.shares_memory(l2, out_l2)
|
|
assert_allclose(g1, g2)
|
|
assert_allclose(g1, g3)
|
|
assert_array_equal(g1, out_g1)
|
|
assert np.shares_memory(g1, out_g1)
|
|
assert_array_equal(g2, out_g2)
|
|
assert np.shares_memory(g2, out_g2)
|
|
assert_array_equal(g3, out_g3)
|
|
assert np.shares_memory(g3, out_g3)
|
|
|
|
if hasattr(loss, "gradient_proba"):
|
|
assert loss.is_multiclass # only for HalfMultinomialLoss
|
|
out_g4 = np.empty_like(raw_prediction)
|
|
out_proba = np.empty_like(raw_prediction)
|
|
g4, proba = loss.gradient_proba(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
gradient_out=out_g4,
|
|
proba_out=out_proba,
|
|
)
|
|
assert_allclose(g1, out_g4)
|
|
assert_allclose(g1, g4)
|
|
assert_allclose(proba, out_proba)
|
|
assert_allclose(np.sum(proba, axis=1), 1, rtol=1e-11)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
@pytest.mark.parametrize("sample_weight", ["ones", "random"])
|
|
def test_sample_weight_multiplies(loss, sample_weight, global_random_seed):
|
|
"""Test sample weights in loss, gradients and hessians.
|
|
|
|
Make sure that passing sample weights to loss, gradient and hessian
|
|
computation methods is equivalent to multiplying by the weights.
|
|
"""
|
|
n_samples = 100
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=n_samples,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-5, 5),
|
|
seed=global_random_seed,
|
|
)
|
|
|
|
if sample_weight == "ones":
|
|
sample_weight = np.ones(shape=n_samples, dtype=np.float64)
|
|
else:
|
|
rng = np.random.RandomState(global_random_seed)
|
|
sample_weight = rng.normal(size=n_samples).astype(np.float64)
|
|
|
|
assert_allclose(
|
|
loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
),
|
|
sample_weight
|
|
* loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=None,
|
|
),
|
|
)
|
|
|
|
losses, gradient = loss.loss_gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=None,
|
|
)
|
|
losses_sw, gradient_sw = loss.loss_gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
)
|
|
assert_allclose(losses * sample_weight, losses_sw)
|
|
if not loss.is_multiclass:
|
|
assert_allclose(gradient * sample_weight, gradient_sw)
|
|
else:
|
|
assert_allclose(gradient * sample_weight[:, None], gradient_sw)
|
|
|
|
gradient, hessian = loss.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=None,
|
|
)
|
|
gradient_sw, hessian_sw = loss.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
)
|
|
if not loss.is_multiclass:
|
|
assert_allclose(gradient * sample_weight, gradient_sw)
|
|
assert_allclose(hessian * sample_weight, hessian_sw)
|
|
else:
|
|
assert_allclose(gradient * sample_weight[:, None], gradient_sw)
|
|
assert_allclose(hessian * sample_weight[:, None], hessian_sw)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
def test_graceful_squeezing(loss):
|
|
"""Test that reshaped raw_prediction gives same results."""
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=20,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-10, 10),
|
|
seed=42,
|
|
)
|
|
|
|
if raw_prediction.ndim == 1:
|
|
raw_prediction_2d = raw_prediction[:, None]
|
|
assert_allclose(
|
|
loss.loss(y_true=y_true, raw_prediction=raw_prediction_2d),
|
|
loss.loss(y_true=y_true, raw_prediction=raw_prediction),
|
|
)
|
|
assert_allclose(
|
|
loss.loss_gradient(y_true=y_true, raw_prediction=raw_prediction_2d),
|
|
loss.loss_gradient(y_true=y_true, raw_prediction=raw_prediction),
|
|
)
|
|
assert_allclose(
|
|
loss.gradient(y_true=y_true, raw_prediction=raw_prediction_2d),
|
|
loss.gradient(y_true=y_true, raw_prediction=raw_prediction),
|
|
)
|
|
assert_allclose(
|
|
loss.gradient_hessian(y_true=y_true, raw_prediction=raw_prediction_2d),
|
|
loss.gradient_hessian(y_true=y_true, raw_prediction=raw_prediction),
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
|
def test_loss_of_perfect_prediction(loss, sample_weight):
|
|
"""Test value of perfect predictions.
|
|
|
|
Loss of y_pred = y_true plus constant_to_optimal_zero should sums up to
|
|
zero.
|
|
"""
|
|
if not loss.is_multiclass:
|
|
# Use small values such that exp(value) is not nan.
|
|
raw_prediction = np.array([-10, -0.1, 0, 0.1, 3, 10])
|
|
# If link is identity, we must respect the interval of y_pred:
|
|
if isinstance(loss.link, IdentityLink):
|
|
eps = 1e-10
|
|
low = loss.interval_y_pred.low
|
|
if not loss.interval_y_pred.low_inclusive:
|
|
low = low + eps
|
|
high = loss.interval_y_pred.high
|
|
if not loss.interval_y_pred.high_inclusive:
|
|
high = high - eps
|
|
raw_prediction = np.clip(raw_prediction, low, high)
|
|
y_true = loss.link.inverse(raw_prediction)
|
|
else:
|
|
# HalfMultinomialLoss
|
|
y_true = np.arange(loss.n_classes).astype(float)
|
|
# raw_prediction with entries -exp(10), but +exp(10) on the diagonal
|
|
# this is close enough to np.inf which would produce nan
|
|
raw_prediction = np.full(
|
|
shape=(loss.n_classes, loss.n_classes),
|
|
fill_value=-np.exp(10),
|
|
dtype=float,
|
|
)
|
|
raw_prediction.flat[:: loss.n_classes + 1] = np.exp(10)
|
|
|
|
if sample_weight == "range":
|
|
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
|
|
|
loss_value = loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
)
|
|
constant_term = loss.constant_to_optimal_zero(
|
|
y_true=y_true, sample_weight=sample_weight
|
|
)
|
|
# Comparing loss_value + constant_term to zero would result in large
|
|
# round-off errors.
|
|
assert_allclose(loss_value, -constant_term, atol=1e-14, rtol=1e-15)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
|
def test_gradients_hessians_numerically(loss, sample_weight, global_random_seed):
|
|
"""Test gradients and hessians with numerical derivatives.
|
|
|
|
Gradient should equal the numerical derivatives of the loss function.
|
|
Hessians should equal the numerical derivatives of gradients.
|
|
"""
|
|
n_samples = 20
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=n_samples,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-5, 5),
|
|
seed=global_random_seed,
|
|
)
|
|
|
|
if sample_weight == "range":
|
|
sample_weight = np.linspace(1, y_true.shape[0], num=y_true.shape[0])
|
|
|
|
g, h = loss.gradient_hessian(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
)
|
|
|
|
assert g.shape == raw_prediction.shape
|
|
assert h.shape == raw_prediction.shape
|
|
|
|
if not loss.is_multiclass:
|
|
|
|
def loss_func(x):
|
|
return loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=x,
|
|
sample_weight=sample_weight,
|
|
)
|
|
|
|
g_numeric = numerical_derivative(loss_func, raw_prediction, eps=1e-6)
|
|
assert_allclose(g, g_numeric, rtol=5e-6, atol=1e-10)
|
|
|
|
def grad_func(x):
|
|
return loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=x,
|
|
sample_weight=sample_weight,
|
|
)
|
|
|
|
h_numeric = numerical_derivative(grad_func, raw_prediction, eps=1e-6)
|
|
if loss.approx_hessian:
|
|
# TODO: What could we test if loss.approx_hessian?
|
|
pass
|
|
else:
|
|
assert_allclose(h, h_numeric, rtol=5e-6, atol=1e-10)
|
|
else:
|
|
# For multiclass loss, we should only change the predictions of the
|
|
# class for which the derivative is taken for, e.g. offset[:, k] = eps
|
|
# for class k.
|
|
# As a softmax is computed, offsetting the whole array by a constant
|
|
# would have no effect on the probabilities, and thus on the loss.
|
|
for k in range(loss.n_classes):
|
|
|
|
def loss_func(x):
|
|
raw = raw_prediction.copy()
|
|
raw[:, k] = x
|
|
return loss.loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw,
|
|
sample_weight=sample_weight,
|
|
)
|
|
|
|
g_numeric = numerical_derivative(loss_func, raw_prediction[:, k], eps=1e-5)
|
|
assert_allclose(g[:, k], g_numeric, rtol=5e-6, atol=1e-10)
|
|
|
|
def grad_func(x):
|
|
raw = raw_prediction.copy()
|
|
raw[:, k] = x
|
|
return loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw,
|
|
sample_weight=sample_weight,
|
|
)[:, k]
|
|
|
|
h_numeric = numerical_derivative(grad_func, raw_prediction[:, k], eps=1e-6)
|
|
if loss.approx_hessian:
|
|
# TODO: What could we test if loss.approx_hessian?
|
|
pass
|
|
else:
|
|
assert_allclose(h[:, k], h_numeric, rtol=5e-6, atol=1e-10)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss, x0, y_true",
|
|
[
|
|
("squared_error", -2.0, 42),
|
|
("squared_error", 117.0, 1.05),
|
|
("squared_error", 0.0, 0.0),
|
|
# The argmin of binomial_loss for y_true=0 and y_true=1 is resp.
|
|
# -inf and +inf due to logit, cf. "complete separation". Therefore, we
|
|
# use 0 < y_true < 1.
|
|
("binomial_loss", 0.3, 0.1),
|
|
("binomial_loss", -12, 0.2),
|
|
("binomial_loss", 30, 0.9),
|
|
("poisson_loss", 12.0, 1.0),
|
|
("poisson_loss", 0.0, 2.0),
|
|
("poisson_loss", -22.0, 10.0),
|
|
],
|
|
)
|
|
@skip_if_32bit
|
|
def test_derivatives(loss, x0, y_true):
|
|
"""Test that gradients are zero at the minimum of the loss.
|
|
|
|
We check this on a single value/sample using Halley's method with the
|
|
first and second order derivatives computed by the Loss instance.
|
|
Note that methods of Loss instances operate on arrays while the newton
|
|
root finder expects a scalar or a one-element array for this purpose.
|
|
"""
|
|
loss = _LOSSES[loss](sample_weight=None)
|
|
y_true = np.array([y_true], dtype=np.float64)
|
|
x0 = np.array([x0], dtype=np.float64)
|
|
|
|
def func(x: np.ndarray) -> np.ndarray:
|
|
"""Compute loss plus constant term.
|
|
|
|
The constant term is such that the minimum function value is zero,
|
|
which is required by the Newton method.
|
|
"""
|
|
return loss.loss(
|
|
y_true=y_true, raw_prediction=x
|
|
) + loss.constant_to_optimal_zero(y_true=y_true)
|
|
|
|
def fprime(x: np.ndarray) -> np.ndarray:
|
|
return loss.gradient(y_true=y_true, raw_prediction=x)
|
|
|
|
def fprime2(x: np.ndarray) -> np.ndarray:
|
|
return loss.gradient_hessian(y_true=y_true, raw_prediction=x)[1]
|
|
|
|
optimum = newton(
|
|
func,
|
|
x0=x0,
|
|
fprime=fprime,
|
|
fprime2=fprime2,
|
|
maxiter=100,
|
|
tol=5e-8,
|
|
)
|
|
|
|
# Need to ravel arrays because assert_allclose requires matching
|
|
# dimensions.
|
|
y_true = y_true.ravel()
|
|
optimum = optimum.ravel()
|
|
assert_allclose(loss.link.inverse(optimum), y_true)
|
|
assert_allclose(func(optimum), 0, atol=1e-14)
|
|
assert_allclose(loss.gradient(y_true=y_true, raw_prediction=optimum), 0, atol=5e-7)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
|
def test_loss_intercept_only(loss, sample_weight):
|
|
"""Test that fit_intercept_only returns the argmin of the loss.
|
|
|
|
Also test that the gradient is zero at the minimum.
|
|
"""
|
|
n_samples = 50
|
|
if not loss.is_multiclass:
|
|
y_true = loss.link.inverse(np.linspace(-4, 4, num=n_samples))
|
|
else:
|
|
y_true = np.arange(n_samples).astype(np.float64) % loss.n_classes
|
|
y_true[::5] = 0 # exceedance of class 0
|
|
|
|
if sample_weight == "range":
|
|
sample_weight = np.linspace(0.1, 2, num=n_samples)
|
|
|
|
a = loss.fit_intercept_only(y_true=y_true, sample_weight=sample_weight)
|
|
|
|
# find minimum by optimization
|
|
def fun(x):
|
|
if not loss.is_multiclass:
|
|
raw_prediction = np.full(shape=(n_samples), fill_value=x)
|
|
else:
|
|
raw_prediction = np.ascontiguousarray(
|
|
np.broadcast_to(x, shape=(n_samples, loss.n_classes))
|
|
)
|
|
return loss(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=sample_weight,
|
|
)
|
|
|
|
if not loss.is_multiclass:
|
|
opt = minimize_scalar(fun, tol=1e-7, options={"maxiter": 100})
|
|
grad = loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=np.full_like(y_true, a),
|
|
sample_weight=sample_weight,
|
|
)
|
|
assert a.shape == tuple() # scalar
|
|
assert a.dtype == y_true.dtype
|
|
assert_all_finite(a)
|
|
a == approx(opt.x, rel=1e-7)
|
|
grad.sum() == approx(0, abs=1e-12)
|
|
else:
|
|
# The constraint corresponds to sum(raw_prediction) = 0. Without it, we would
|
|
# need to apply loss.symmetrize_raw_prediction to opt.x before comparing.
|
|
opt = minimize(
|
|
fun,
|
|
np.zeros((loss.n_classes)),
|
|
tol=1e-13,
|
|
options={"maxiter": 100},
|
|
method="SLSQP",
|
|
constraints=LinearConstraint(np.ones((1, loss.n_classes)), 0, 0),
|
|
)
|
|
grad = loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=np.tile(a, (n_samples, 1)),
|
|
sample_weight=sample_weight,
|
|
)
|
|
assert a.dtype == y_true.dtype
|
|
assert_all_finite(a)
|
|
assert_allclose(a, opt.x, rtol=5e-6, atol=1e-12)
|
|
assert_allclose(grad.sum(axis=0), 0, atol=1e-12)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss, func, random_dist",
|
|
[
|
|
(HalfSquaredError(), np.mean, "normal"),
|
|
(AbsoluteError(), np.median, "normal"),
|
|
(PinballLoss(quantile=0.25), lambda x: np.percentile(x, q=25), "normal"),
|
|
(HalfPoissonLoss(), np.mean, "poisson"),
|
|
(HalfGammaLoss(), np.mean, "exponential"),
|
|
(HalfTweedieLoss(), np.mean, "exponential"),
|
|
(HalfBinomialLoss(), np.mean, "binomial"),
|
|
],
|
|
)
|
|
def test_specific_fit_intercept_only(loss, func, random_dist, global_random_seed):
|
|
"""Test that fit_intercept_only returns the correct functional.
|
|
|
|
We test the functional for specific, meaningful distributions, e.g.
|
|
squared error estimates the expectation of a probability distribution.
|
|
"""
|
|
rng = np.random.RandomState(global_random_seed)
|
|
if random_dist == "binomial":
|
|
y_train = rng.binomial(1, 0.5, size=100)
|
|
else:
|
|
y_train = getattr(rng, random_dist)(size=100)
|
|
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
|
# Make sure baseline prediction is the expected functional=func, e.g. mean
|
|
# or median.
|
|
assert_all_finite(baseline_prediction)
|
|
assert baseline_prediction == approx(loss.link.link(func(y_train)))
|
|
assert loss.link.inverse(baseline_prediction) == approx(func(y_train))
|
|
if isinstance(loss, IdentityLink):
|
|
assert_allclose(loss.link.inverse(baseline_prediction), baseline_prediction)
|
|
|
|
# Test baseline at boundary
|
|
if loss.interval_y_true.low_inclusive:
|
|
y_train.fill(loss.interval_y_true.low)
|
|
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
|
assert_all_finite(baseline_prediction)
|
|
if loss.interval_y_true.high_inclusive:
|
|
y_train.fill(loss.interval_y_true.high)
|
|
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
|
assert_all_finite(baseline_prediction)
|
|
|
|
|
|
def test_multinomial_loss_fit_intercept_only():
|
|
"""Test that fit_intercept_only returns the mean functional for CCE."""
|
|
rng = np.random.RandomState(0)
|
|
n_classes = 4
|
|
loss = HalfMultinomialLoss(n_classes=n_classes)
|
|
# Same logic as test_specific_fit_intercept_only. Here inverse link
|
|
# function = softmax and link function = log - symmetry term.
|
|
y_train = rng.randint(0, n_classes + 1, size=100).astype(np.float64)
|
|
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
|
assert baseline_prediction.shape == (n_classes,)
|
|
p = np.zeros(n_classes, dtype=y_train.dtype)
|
|
for k in range(n_classes):
|
|
p[k] = (y_train == k).mean()
|
|
assert_allclose(baseline_prediction, np.log(p) - np.mean(np.log(p)))
|
|
assert_allclose(baseline_prediction[None, :], loss.link.link(p[None, :]))
|
|
|
|
for y_train in (np.zeros(shape=10), np.ones(shape=10)):
|
|
y_train = y_train.astype(np.float64)
|
|
baseline_prediction = loss.fit_intercept_only(y_true=y_train)
|
|
assert baseline_prediction.dtype == y_train.dtype
|
|
assert_all_finite(baseline_prediction)
|
|
|
|
|
|
def test_binomial_and_multinomial_loss(global_random_seed):
|
|
"""Test that multinomial loss with n_classes = 2 is the same as binomial loss."""
|
|
rng = np.random.RandomState(global_random_seed)
|
|
n_samples = 20
|
|
binom = HalfBinomialLoss()
|
|
multinom = HalfMultinomialLoss(n_classes=2)
|
|
y_train = rng.randint(0, 2, size=n_samples).astype(np.float64)
|
|
raw_prediction = rng.normal(size=n_samples)
|
|
raw_multinom = np.empty((n_samples, 2))
|
|
raw_multinom[:, 0] = -0.5 * raw_prediction
|
|
raw_multinom[:, 1] = 0.5 * raw_prediction
|
|
assert_allclose(
|
|
binom.loss(y_true=y_train, raw_prediction=raw_prediction),
|
|
multinom.loss(y_true=y_train, raw_prediction=raw_multinom),
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
def test_predict_proba(loss, global_random_seed):
|
|
"""Test that predict_proba and gradient_proba work as expected."""
|
|
n_samples = 20
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=n_samples,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-5, 5),
|
|
seed=global_random_seed,
|
|
)
|
|
|
|
if hasattr(loss, "predict_proba"):
|
|
proba = loss.predict_proba(raw_prediction)
|
|
assert proba.shape == (n_samples, loss.n_classes)
|
|
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
|
|
|
|
if hasattr(loss, "gradient_proba"):
|
|
for grad, proba in (
|
|
(None, None),
|
|
(None, np.empty_like(raw_prediction)),
|
|
(np.empty_like(raw_prediction), None),
|
|
(np.empty_like(raw_prediction), np.empty_like(raw_prediction)),
|
|
):
|
|
grad, proba = loss.gradient_proba(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=None,
|
|
gradient_out=grad,
|
|
proba_out=proba,
|
|
)
|
|
assert proba.shape == (n_samples, loss.n_classes)
|
|
assert np.sum(proba, axis=1) == approx(1, rel=1e-11)
|
|
assert_allclose(
|
|
grad,
|
|
loss.gradient(
|
|
y_true=y_true,
|
|
raw_prediction=raw_prediction,
|
|
sample_weight=None,
|
|
gradient_out=None,
|
|
),
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", ALL_LOSSES)
|
|
@pytest.mark.parametrize("sample_weight", [None, "range"])
|
|
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
|
|
@pytest.mark.parametrize("order", ("C", "F"))
|
|
def test_init_gradient_and_hessians(loss, sample_weight, dtype, order):
|
|
"""Test that init_gradient_and_hessian works as expected.
|
|
|
|
passing sample_weight to a loss correctly influences the constant_hessian
|
|
attribute, and consequently the shape of the hessian array.
|
|
"""
|
|
n_samples = 5
|
|
if sample_weight == "range":
|
|
sample_weight = np.ones(n_samples)
|
|
loss = loss(sample_weight=sample_weight)
|
|
gradient, hessian = loss.init_gradient_and_hessian(
|
|
n_samples=n_samples,
|
|
dtype=dtype,
|
|
order=order,
|
|
)
|
|
if loss.constant_hessian:
|
|
assert gradient.shape == (n_samples,)
|
|
assert hessian.shape == (1,)
|
|
elif loss.is_multiclass:
|
|
assert gradient.shape == (n_samples, loss.n_classes)
|
|
assert hessian.shape == (n_samples, loss.n_classes)
|
|
else:
|
|
assert hessian.shape == (n_samples,)
|
|
assert hessian.shape == (n_samples,)
|
|
|
|
assert gradient.dtype == dtype
|
|
assert hessian.dtype == dtype
|
|
|
|
if order == "C":
|
|
assert gradient.flags.c_contiguous
|
|
assert hessian.flags.c_contiguous
|
|
else:
|
|
assert gradient.flags.f_contiguous
|
|
assert hessian.flags.f_contiguous
|
|
|
|
|
|
@pytest.mark.parametrize("loss", ALL_LOSSES)
|
|
@pytest.mark.parametrize(
|
|
"params, err_msg",
|
|
[
|
|
(
|
|
{"dtype": np.int64},
|
|
f"Valid options for 'dtype' are .* Got dtype={np.int64} instead.",
|
|
),
|
|
],
|
|
)
|
|
def test_init_gradient_and_hessian_raises(loss, params, err_msg):
|
|
"""Test that init_gradient_and_hessian raises errors for invalid input."""
|
|
loss = loss()
|
|
with pytest.raises((ValueError, TypeError), match=err_msg):
|
|
gradient, hessian = loss.init_gradient_and_hessian(n_samples=5, **params)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss, params, err_type, err_msg",
|
|
[
|
|
(
|
|
PinballLoss,
|
|
{"quantile": None},
|
|
TypeError,
|
|
"quantile must be an instance of float, not NoneType.",
|
|
),
|
|
(
|
|
PinballLoss,
|
|
{"quantile": 0},
|
|
ValueError,
|
|
"quantile == 0, must be > 0.",
|
|
),
|
|
(PinballLoss, {"quantile": 1.1}, ValueError, "quantile == 1.1, must be < 1."),
|
|
],
|
|
)
|
|
def test_loss_init_parameter_validation(loss, params, err_type, err_msg):
|
|
"""Test that loss raises errors for invalid input."""
|
|
with pytest.raises(err_type, match=err_msg):
|
|
loss(**params)
|
|
|
|
|
|
@pytest.mark.parametrize("loss", LOSS_INSTANCES, ids=loss_instance_name)
|
|
def test_loss_pickle(loss):
|
|
"""Test that losses can be pickled."""
|
|
n_samples = 20
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=loss,
|
|
n_samples=n_samples,
|
|
y_bound=(-100, 100),
|
|
raw_bound=(-5, 5),
|
|
seed=42,
|
|
)
|
|
pickled_loss = pickle.dumps(loss)
|
|
unpickled_loss = pickle.loads(pickled_loss)
|
|
assert loss(y_true=y_true, raw_prediction=raw_prediction) == approx(
|
|
unpickled_loss(y_true=y_true, raw_prediction=raw_prediction)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("p", [-1.5, 0, 1, 1.5, 2, 3])
|
|
def test_tweedie_log_identity_consistency(p):
|
|
"""Test for identical losses when only the link function is different."""
|
|
half_tweedie_log = HalfTweedieLoss(power=p)
|
|
half_tweedie_identity = HalfTweedieLossIdentity(power=p)
|
|
n_samples = 10
|
|
y_true, raw_prediction = random_y_true_raw_prediction(
|
|
loss=half_tweedie_log, n_samples=n_samples, seed=42
|
|
)
|
|
y_pred = half_tweedie_log.link.inverse(raw_prediction) # exp(raw_prediction)
|
|
|
|
# Let's compare the loss values, up to some constant term that is dropped
|
|
# in HalfTweedieLoss but not in HalfTweedieLossIdentity.
|
|
loss_log = half_tweedie_log.loss(
|
|
y_true=y_true, raw_prediction=raw_prediction
|
|
) + half_tweedie_log.constant_to_optimal_zero(y_true)
|
|
loss_identity = half_tweedie_identity.loss(
|
|
y_true=y_true, raw_prediction=y_pred
|
|
) + half_tweedie_identity.constant_to_optimal_zero(y_true)
|
|
# Note that HalfTweedieLoss ignores different constant terms than
|
|
# HalfTweedieLossIdentity. Constant terms means terms not depending on
|
|
# raw_prediction. By adding these terms, `constant_to_optimal_zero`, both losses
|
|
# give the same values.
|
|
assert_allclose(loss_log, loss_identity)
|
|
|
|
# For gradients and hessians, the constant terms do not matter. We have, however,
|
|
# to account for the chain rule, i.e. with x=raw_prediction
|
|
# gradient_log(x) = d/dx loss_log(x)
|
|
# = d/dx loss_identity(exp(x))
|
|
# = exp(x) * gradient_identity(exp(x))
|
|
# Similarly,
|
|
# hessian_log(x) = exp(x) * gradient_identity(exp(x))
|
|
# + exp(x)**2 * hessian_identity(x)
|
|
gradient_log, hessian_log = half_tweedie_log.gradient_hessian(
|
|
y_true=y_true, raw_prediction=raw_prediction
|
|
)
|
|
gradient_identity, hessian_identity = half_tweedie_identity.gradient_hessian(
|
|
y_true=y_true, raw_prediction=y_pred
|
|
)
|
|
assert_allclose(gradient_log, y_pred * gradient_identity)
|
|
assert_allclose(
|
|
hessian_log, y_pred * gradient_identity + y_pred**2 * hessian_identity
|
|
)
|