709 lines
23 KiB
Python
709 lines
23 KiB
Python
import re
|
|
from collections import defaultdict
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import scipy.sparse as sp
|
|
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_almost_equal
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_allclose
|
|
|
|
from sklearn.datasets import make_classification
|
|
from sklearn.datasets import make_multilabel_classification
|
|
from sklearn.datasets import make_hastie_10_2
|
|
from sklearn.datasets import make_regression
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.datasets import make_friedman1
|
|
from sklearn.datasets import make_friedman2
|
|
from sklearn.datasets import make_friedman3
|
|
from sklearn.datasets import make_low_rank_matrix
|
|
from sklearn.datasets import make_moons
|
|
from sklearn.datasets import make_circles
|
|
from sklearn.datasets import make_sparse_coded_signal
|
|
from sklearn.datasets import make_sparse_uncorrelated
|
|
from sklearn.datasets import make_spd_matrix
|
|
from sklearn.datasets import make_swiss_roll
|
|
from sklearn.datasets import make_s_curve
|
|
from sklearn.datasets import make_biclusters
|
|
from sklearn.datasets import make_checkerboard
|
|
|
|
from sklearn.utils.validation import assert_all_finite
|
|
|
|
|
|
def test_make_classification():
|
|
weights = [0.1, 0.25]
|
|
X, y = make_classification(
|
|
n_samples=100,
|
|
n_features=20,
|
|
n_informative=5,
|
|
n_redundant=1,
|
|
n_repeated=1,
|
|
n_classes=3,
|
|
n_clusters_per_class=1,
|
|
hypercube=False,
|
|
shift=None,
|
|
scale=None,
|
|
weights=weights,
|
|
random_state=0,
|
|
)
|
|
|
|
assert weights == [0.1, 0.25]
|
|
assert X.shape == (100, 20), "X shape mismatch"
|
|
assert y.shape == (100,), "y shape mismatch"
|
|
assert np.unique(y).shape == (3,), "Unexpected number of classes"
|
|
assert sum(y == 0) == 10, "Unexpected number of samples in class #0"
|
|
assert sum(y == 1) == 25, "Unexpected number of samples in class #1"
|
|
assert sum(y == 2) == 65, "Unexpected number of samples in class #2"
|
|
|
|
# Test for n_features > 30
|
|
X, y = make_classification(
|
|
n_samples=2000,
|
|
n_features=31,
|
|
n_informative=31,
|
|
n_redundant=0,
|
|
n_repeated=0,
|
|
hypercube=True,
|
|
scale=0.5,
|
|
random_state=0,
|
|
)
|
|
|
|
assert X.shape == (2000, 31), "X shape mismatch"
|
|
assert y.shape == (2000,), "y shape mismatch"
|
|
assert (
|
|
np.unique(X.view([("", X.dtype)] * X.shape[1]))
|
|
.view(X.dtype)
|
|
.reshape(-1, X.shape[1])
|
|
.shape[0]
|
|
== 2000
|
|
), "Unexpected number of unique rows"
|
|
|
|
|
|
def test_make_classification_informative_features():
|
|
"""Test the construction of informative features in make_classification
|
|
|
|
Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and
|
|
fully-specified `weights`.
|
|
"""
|
|
# Create very separate clusters; check that vertices are unique and
|
|
# correspond to classes
|
|
class_sep = 1e6
|
|
make = partial(
|
|
make_classification,
|
|
class_sep=class_sep,
|
|
n_redundant=0,
|
|
n_repeated=0,
|
|
flip_y=0,
|
|
shift=0,
|
|
scale=1,
|
|
shuffle=False,
|
|
)
|
|
|
|
for n_informative, weights, n_clusters_per_class in [
|
|
(2, [1], 1),
|
|
(2, [1 / 3] * 3, 1),
|
|
(2, [1 / 4] * 4, 1),
|
|
(2, [1 / 2] * 2, 2),
|
|
(2, [3 / 4, 1 / 4], 2),
|
|
(10, [1 / 3] * 3, 10),
|
|
(int(64), [1], 1),
|
|
]:
|
|
n_classes = len(weights)
|
|
n_clusters = n_classes * n_clusters_per_class
|
|
n_samples = n_clusters * 50
|
|
|
|
for hypercube in (False, True):
|
|
X, y = make(
|
|
n_samples=n_samples,
|
|
n_classes=n_classes,
|
|
weights=weights,
|
|
n_features=n_informative,
|
|
n_informative=n_informative,
|
|
n_clusters_per_class=n_clusters_per_class,
|
|
hypercube=hypercube,
|
|
random_state=0,
|
|
)
|
|
|
|
assert X.shape == (n_samples, n_informative)
|
|
assert y.shape == (n_samples,)
|
|
|
|
# Cluster by sign, viewed as strings to allow uniquing
|
|
signs = np.sign(X)
|
|
signs = signs.view(dtype="|S{0}".format(signs.strides[0]))
|
|
unique_signs, cluster_index = np.unique(signs, return_inverse=True)
|
|
|
|
assert (
|
|
len(unique_signs) == n_clusters
|
|
), "Wrong number of clusters, or not in distinct quadrants"
|
|
|
|
clusters_by_class = defaultdict(set)
|
|
for cluster, cls in zip(cluster_index, y):
|
|
clusters_by_class[cls].add(cluster)
|
|
for clusters in clusters_by_class.values():
|
|
assert (
|
|
len(clusters) == n_clusters_per_class
|
|
), "Wrong number of clusters per class"
|
|
assert len(clusters_by_class) == n_classes, "Wrong number of classes"
|
|
|
|
assert_array_almost_equal(
|
|
np.bincount(y) / len(y) // weights,
|
|
[1] * n_classes,
|
|
err_msg="Wrong number of samples per class",
|
|
)
|
|
|
|
# Ensure on vertices of hypercube
|
|
for cluster in range(len(unique_signs)):
|
|
centroid = X[cluster_index == cluster].mean(axis=0)
|
|
if hypercube:
|
|
assert_array_almost_equal(
|
|
np.abs(centroid) / class_sep,
|
|
np.ones(n_informative),
|
|
decimal=5,
|
|
err_msg="Clusters are not centered on hypercube vertices",
|
|
)
|
|
else:
|
|
with pytest.raises(AssertionError):
|
|
assert_array_almost_equal(
|
|
np.abs(centroid) / class_sep,
|
|
np.ones(n_informative),
|
|
decimal=5,
|
|
err_msg=(
|
|
"Clusters should not be centered on hypercube vertices"
|
|
),
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
make(n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1)
|
|
with pytest.raises(ValueError):
|
|
make(n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"weights, err_type, err_msg",
|
|
[
|
|
([], ValueError, "Weights specified but incompatible with number of classes."),
|
|
(
|
|
[0.25, 0.75, 0.1],
|
|
ValueError,
|
|
"Weights specified but incompatible with number of classes.",
|
|
),
|
|
(
|
|
np.array([]),
|
|
ValueError,
|
|
"Weights specified but incompatible with number of classes.",
|
|
),
|
|
(
|
|
np.array([0.25, 0.75, 0.1]),
|
|
ValueError,
|
|
"Weights specified but incompatible with number of classes.",
|
|
),
|
|
(
|
|
np.random.random(3),
|
|
ValueError,
|
|
"Weights specified but incompatible with number of classes.",
|
|
),
|
|
],
|
|
)
|
|
def test_make_classification_weights_type(weights, err_type, err_msg):
|
|
with pytest.raises(err_type, match=err_msg):
|
|
make_classification(weights=weights)
|
|
|
|
|
|
@pytest.mark.parametrize("kwargs", [{}, {"n_classes": 3, "n_informative": 3}])
|
|
def test_make_classification_weights_array_or_list_ok(kwargs):
|
|
X1, y1 = make_classification(weights=[0.1, 0.9], random_state=0, **kwargs)
|
|
X2, y2 = make_classification(weights=np.array([0.1, 0.9]), random_state=0, **kwargs)
|
|
assert_almost_equal(X1, X2)
|
|
assert_almost_equal(y1, y2)
|
|
|
|
|
|
def test_make_multilabel_classification_return_sequences():
|
|
for allow_unlabeled, min_length in zip((True, False), (0, 1)):
|
|
X, Y = make_multilabel_classification(
|
|
n_samples=100,
|
|
n_features=20,
|
|
n_classes=3,
|
|
random_state=0,
|
|
return_indicator=False,
|
|
allow_unlabeled=allow_unlabeled,
|
|
)
|
|
assert X.shape == (100, 20), "X shape mismatch"
|
|
if not allow_unlabeled:
|
|
assert max([max(y) for y in Y]) == 2
|
|
assert min([len(y) for y in Y]) == min_length
|
|
assert max([len(y) for y in Y]) <= 3
|
|
|
|
|
|
def test_make_multilabel_classification_return_indicator():
|
|
for allow_unlabeled, min_length in zip((True, False), (0, 1)):
|
|
X, Y = make_multilabel_classification(
|
|
n_samples=25,
|
|
n_features=20,
|
|
n_classes=3,
|
|
random_state=0,
|
|
allow_unlabeled=allow_unlabeled,
|
|
)
|
|
assert X.shape == (25, 20), "X shape mismatch"
|
|
assert Y.shape == (25, 3), "Y shape mismatch"
|
|
assert np.all(np.sum(Y, axis=0) > min_length)
|
|
|
|
# Also test return_distributions and return_indicator with True
|
|
X2, Y2, p_c, p_w_c = make_multilabel_classification(
|
|
n_samples=25,
|
|
n_features=20,
|
|
n_classes=3,
|
|
random_state=0,
|
|
allow_unlabeled=allow_unlabeled,
|
|
return_distributions=True,
|
|
)
|
|
|
|
assert_array_almost_equal(X, X2)
|
|
assert_array_equal(Y, Y2)
|
|
assert p_c.shape == (3,)
|
|
assert_almost_equal(p_c.sum(), 1)
|
|
assert p_w_c.shape == (20, 3)
|
|
assert_almost_equal(p_w_c.sum(axis=0), [1] * 3)
|
|
|
|
|
|
def test_make_multilabel_classification_return_indicator_sparse():
|
|
for allow_unlabeled, min_length in zip((True, False), (0, 1)):
|
|
X, Y = make_multilabel_classification(
|
|
n_samples=25,
|
|
n_features=20,
|
|
n_classes=3,
|
|
random_state=0,
|
|
return_indicator="sparse",
|
|
allow_unlabeled=allow_unlabeled,
|
|
)
|
|
assert X.shape == (25, 20), "X shape mismatch"
|
|
assert Y.shape == (25, 3), "Y shape mismatch"
|
|
assert sp.issparse(Y)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"params, err_msg",
|
|
[
|
|
({"n_classes": 0}, "'n_classes' should be an integer"),
|
|
({"length": 0}, "'length' should be an integer"),
|
|
],
|
|
)
|
|
def test_make_multilabel_classification_valid_arguments(params, err_msg):
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
make_multilabel_classification(**params)
|
|
|
|
|
|
def test_make_hastie_10_2():
|
|
X, y = make_hastie_10_2(n_samples=100, random_state=0)
|
|
assert X.shape == (100, 10), "X shape mismatch"
|
|
assert y.shape == (100,), "y shape mismatch"
|
|
assert np.unique(y).shape == (2,), "Unexpected number of classes"
|
|
|
|
|
|
def test_make_regression():
|
|
X, y, c = make_regression(
|
|
n_samples=100,
|
|
n_features=10,
|
|
n_informative=3,
|
|
effective_rank=5,
|
|
coef=True,
|
|
bias=0.0,
|
|
noise=1.0,
|
|
random_state=0,
|
|
)
|
|
|
|
assert X.shape == (100, 10), "X shape mismatch"
|
|
assert y.shape == (100,), "y shape mismatch"
|
|
assert c.shape == (10,), "coef shape mismatch"
|
|
assert sum(c != 0.0) == 3, "Unexpected number of informative features"
|
|
|
|
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0).
|
|
assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
|
|
|
|
# Test with small number of features.
|
|
X, y = make_regression(n_samples=100, n_features=1) # n_informative=3
|
|
assert X.shape == (100, 1)
|
|
|
|
|
|
def test_make_regression_multitarget():
|
|
X, y, c = make_regression(
|
|
n_samples=100,
|
|
n_features=10,
|
|
n_informative=3,
|
|
n_targets=3,
|
|
coef=True,
|
|
noise=1.0,
|
|
random_state=0,
|
|
)
|
|
|
|
assert X.shape == (100, 10), "X shape mismatch"
|
|
assert y.shape == (100, 3), "y shape mismatch"
|
|
assert c.shape == (10, 3), "coef shape mismatch"
|
|
assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features")
|
|
|
|
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0)
|
|
assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
|
|
|
|
|
|
def test_make_blobs():
|
|
cluster_stds = np.array([0.05, 0.2, 0.4])
|
|
cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
|
|
X, y = make_blobs(
|
|
random_state=0,
|
|
n_samples=50,
|
|
n_features=2,
|
|
centers=cluster_centers,
|
|
cluster_std=cluster_stds,
|
|
)
|
|
|
|
assert X.shape == (50, 2), "X shape mismatch"
|
|
assert y.shape == (50,), "y shape mismatch"
|
|
assert np.unique(y).shape == (3,), "Unexpected number of blobs"
|
|
for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)):
|
|
assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std")
|
|
|
|
|
|
def test_make_blobs_n_samples_list():
|
|
n_samples = [50, 30, 20]
|
|
X, y = make_blobs(n_samples=n_samples, n_features=2, random_state=0)
|
|
|
|
assert X.shape == (sum(n_samples), 2), "X shape mismatch"
|
|
assert all(
|
|
np.bincount(y, minlength=len(n_samples)) == n_samples
|
|
), "Incorrect number of samples per blob"
|
|
|
|
|
|
def test_make_blobs_n_samples_list_with_centers():
|
|
n_samples = [20, 20, 20]
|
|
centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
|
|
cluster_stds = np.array([0.05, 0.2, 0.4])
|
|
X, y = make_blobs(
|
|
n_samples=n_samples, centers=centers, cluster_std=cluster_stds, random_state=0
|
|
)
|
|
|
|
assert X.shape == (sum(n_samples), 2), "X shape mismatch"
|
|
assert all(
|
|
np.bincount(y, minlength=len(n_samples)) == n_samples
|
|
), "Incorrect number of samples per blob"
|
|
for i, (ctr, std) in enumerate(zip(centers, cluster_stds)):
|
|
assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"n_samples", [[5, 3, 0], np.array([5, 3, 0]), tuple([5, 3, 0])]
|
|
)
|
|
def test_make_blobs_n_samples_centers_none(n_samples):
|
|
centers = None
|
|
X, y = make_blobs(n_samples=n_samples, centers=centers, random_state=0)
|
|
|
|
assert X.shape == (sum(n_samples), 2), "X shape mismatch"
|
|
assert all(
|
|
np.bincount(y, minlength=len(n_samples)) == n_samples
|
|
), "Incorrect number of samples per blob"
|
|
|
|
|
|
def test_make_blobs_return_centers():
|
|
n_samples = [10, 20]
|
|
n_features = 3
|
|
X, y, centers = make_blobs(
|
|
n_samples=n_samples, n_features=n_features, return_centers=True, random_state=0
|
|
)
|
|
|
|
assert centers.shape == (len(n_samples), n_features)
|
|
|
|
|
|
def test_make_blobs_error():
|
|
n_samples = [20, 20, 20]
|
|
centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
|
|
cluster_stds = np.array([0.05, 0.2, 0.4])
|
|
wrong_centers_msg = re.escape(
|
|
"Length of `n_samples` not consistent with number of centers. "
|
|
f"Got n_samples = {n_samples} and centers = {centers[:-1]}"
|
|
)
|
|
with pytest.raises(ValueError, match=wrong_centers_msg):
|
|
make_blobs(n_samples, centers=centers[:-1])
|
|
wrong_std_msg = re.escape(
|
|
"Length of `clusters_std` not consistent with number of centers. "
|
|
f"Got centers = {centers} and cluster_std = {cluster_stds[:-1]}"
|
|
)
|
|
with pytest.raises(ValueError, match=wrong_std_msg):
|
|
make_blobs(n_samples, centers=centers, cluster_std=cluster_stds[:-1])
|
|
wrong_type_msg = "Parameter `centers` must be array-like. Got {!r} instead".format(
|
|
3
|
|
)
|
|
with pytest.raises(ValueError, match=wrong_type_msg):
|
|
make_blobs(n_samples, centers=3)
|
|
|
|
|
|
def test_make_friedman1():
|
|
X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0)
|
|
|
|
assert X.shape == (5, 10), "X shape mismatch"
|
|
assert y.shape == (5,), "y shape mismatch"
|
|
|
|
assert_array_almost_equal(
|
|
y,
|
|
10 * np.sin(np.pi * X[:, 0] * X[:, 1])
|
|
+ 20 * (X[:, 2] - 0.5) ** 2
|
|
+ 10 * X[:, 3]
|
|
+ 5 * X[:, 4],
|
|
)
|
|
|
|
|
|
def test_make_friedman2():
|
|
X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0)
|
|
|
|
assert X.shape == (5, 4), "X shape mismatch"
|
|
assert y.shape == (5,), "y shape mismatch"
|
|
|
|
assert_array_almost_equal(
|
|
y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5
|
|
)
|
|
|
|
|
|
def test_make_friedman3():
|
|
X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0)
|
|
|
|
assert X.shape == (5, 4), "X shape mismatch"
|
|
assert y.shape == (5,), "y shape mismatch"
|
|
|
|
assert_array_almost_equal(
|
|
y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])
|
|
)
|
|
|
|
|
|
def test_make_low_rank_matrix():
|
|
X = make_low_rank_matrix(
|
|
n_samples=50,
|
|
n_features=25,
|
|
effective_rank=5,
|
|
tail_strength=0.01,
|
|
random_state=0,
|
|
)
|
|
|
|
assert X.shape == (50, 25), "X shape mismatch"
|
|
|
|
from numpy.linalg import svd
|
|
|
|
u, s, v = svd(X)
|
|
assert sum(s) - 5 < 0.1, "X rank is not approximately 5"
|
|
|
|
|
|
def test_make_sparse_coded_signal():
|
|
Y, D, X = make_sparse_coded_signal(
|
|
n_samples=5,
|
|
n_components=8,
|
|
n_features=10,
|
|
n_nonzero_coefs=3,
|
|
random_state=0,
|
|
data_transposed=False,
|
|
)
|
|
assert Y.shape == (5, 10), "Y shape mismatch"
|
|
assert D.shape == (8, 10), "D shape mismatch"
|
|
assert X.shape == (5, 8), "X shape mismatch"
|
|
for row in X:
|
|
assert len(np.flatnonzero(row)) == 3, "Non-zero coefs mismatch"
|
|
assert_allclose(Y, X @ D)
|
|
assert_allclose(np.sqrt((D**2).sum(axis=1)), np.ones(D.shape[0]))
|
|
|
|
|
|
def test_make_sparse_coded_signal_transposed():
|
|
Y, D, X = make_sparse_coded_signal(
|
|
n_samples=5,
|
|
n_components=8,
|
|
n_features=10,
|
|
n_nonzero_coefs=3,
|
|
random_state=0,
|
|
data_transposed=True,
|
|
)
|
|
assert Y.shape == (10, 5), "Y shape mismatch"
|
|
assert D.shape == (10, 8), "D shape mismatch"
|
|
assert X.shape == (8, 5), "X shape mismatch"
|
|
for col in X.T:
|
|
assert len(np.flatnonzero(col)) == 3, "Non-zero coefs mismatch"
|
|
assert_allclose(Y, D @ X)
|
|
assert_allclose(np.sqrt((D**2).sum(axis=0)), np.ones(D.shape[1]))
|
|
|
|
|
|
# TODO(1.3): remove
|
|
def test_make_sparse_code_signal_warning():
|
|
"""Check the message for future deprecation."""
|
|
warn_msg = "The default value of data_transposed will change from True to False"
|
|
with pytest.warns(FutureWarning, match=warn_msg):
|
|
make_sparse_coded_signal(
|
|
n_samples=1, n_components=1, n_features=1, n_nonzero_coefs=1, random_state=0
|
|
)
|
|
|
|
|
|
def test_make_sparse_uncorrelated():
|
|
X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0)
|
|
|
|
assert X.shape == (5, 10), "X shape mismatch"
|
|
assert y.shape == (5,), "y shape mismatch"
|
|
|
|
|
|
def test_make_spd_matrix():
|
|
X = make_spd_matrix(n_dim=5, random_state=0)
|
|
|
|
assert X.shape == (5, 5), "X shape mismatch"
|
|
assert_array_almost_equal(X, X.T)
|
|
|
|
from numpy.linalg import eig
|
|
|
|
eigenvalues, _ = eig(X)
|
|
assert_array_equal(
|
|
eigenvalues > 0, np.array([True] * 5), "X is not positive-definite"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("hole", [False, True])
|
|
def test_make_swiss_roll(hole):
|
|
X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0, hole=hole)
|
|
|
|
assert X.shape == (5, 3)
|
|
assert t.shape == (5,)
|
|
assert_array_almost_equal(X[:, 0], t * np.cos(t))
|
|
assert_array_almost_equal(X[:, 2], t * np.sin(t))
|
|
|
|
|
|
def test_make_s_curve():
|
|
X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0)
|
|
|
|
assert X.shape == (5, 3), "X shape mismatch"
|
|
assert t.shape == (5,), "t shape mismatch"
|
|
assert_array_almost_equal(X[:, 0], np.sin(t))
|
|
assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1))
|
|
|
|
|
|
def test_make_biclusters():
|
|
X, rows, cols = make_biclusters(
|
|
shape=(100, 100), n_clusters=4, shuffle=True, random_state=0
|
|
)
|
|
assert X.shape == (100, 100), "X shape mismatch"
|
|
assert rows.shape == (4, 100), "rows shape mismatch"
|
|
assert cols.shape == (
|
|
4,
|
|
100,
|
|
), "columns shape mismatch"
|
|
assert_all_finite(X)
|
|
assert_all_finite(rows)
|
|
assert_all_finite(cols)
|
|
|
|
X2, _, _ = make_biclusters(
|
|
shape=(100, 100), n_clusters=4, shuffle=True, random_state=0
|
|
)
|
|
assert_array_almost_equal(X, X2)
|
|
|
|
|
|
def test_make_checkerboard():
|
|
X, rows, cols = make_checkerboard(
|
|
shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0
|
|
)
|
|
assert X.shape == (100, 100), "X shape mismatch"
|
|
assert rows.shape == (100, 100), "rows shape mismatch"
|
|
assert cols.shape == (
|
|
100,
|
|
100,
|
|
), "columns shape mismatch"
|
|
|
|
X, rows, cols = make_checkerboard(
|
|
shape=(100, 100), n_clusters=2, shuffle=True, random_state=0
|
|
)
|
|
assert_all_finite(X)
|
|
assert_all_finite(rows)
|
|
assert_all_finite(cols)
|
|
|
|
X1, _, _ = make_checkerboard(
|
|
shape=(100, 100), n_clusters=2, shuffle=True, random_state=0
|
|
)
|
|
X2, _, _ = make_checkerboard(
|
|
shape=(100, 100), n_clusters=2, shuffle=True, random_state=0
|
|
)
|
|
assert_array_almost_equal(X1, X2)
|
|
|
|
|
|
def test_make_moons():
|
|
X, y = make_moons(3, shuffle=False)
|
|
for x, label in zip(X, y):
|
|
center = [0.0, 0.0] if label == 0 else [1.0, 0.5]
|
|
dist_sqr = ((x - center) ** 2).sum()
|
|
assert_almost_equal(
|
|
dist_sqr, 1.0, err_msg="Point is not on expected unit circle"
|
|
)
|
|
|
|
|
|
def test_make_moons_unbalanced():
|
|
X, y = make_moons(n_samples=(7, 5))
|
|
assert (
|
|
np.sum(y == 0) == 7 and np.sum(y == 1) == 5
|
|
), "Number of samples in a moon is wrong"
|
|
assert X.shape == (12, 2), "X shape mismatch"
|
|
assert y.shape == (12,), "y shape mismatch"
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=r"`n_samples` can be either an int " r"or a two-element tuple.",
|
|
):
|
|
make_moons(n_samples=[1, 2, 3])
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=r"`n_samples` can be either an int " r"or a two-element tuple.",
|
|
):
|
|
make_moons(n_samples=(10,))
|
|
|
|
|
|
def test_make_circles():
|
|
factor = 0.3
|
|
|
|
for n_samples, n_outer, n_inner in [(7, 3, 4), (8, 4, 4)]:
|
|
# Testing odd and even case, because in the past make_circles always
|
|
# created an even number of samples.
|
|
X, y = make_circles(n_samples, shuffle=False, noise=None, factor=factor)
|
|
assert X.shape == (n_samples, 2), "X shape mismatch"
|
|
assert y.shape == (n_samples,), "y shape mismatch"
|
|
center = [0.0, 0.0]
|
|
for x, label in zip(X, y):
|
|
dist_sqr = ((x - center) ** 2).sum()
|
|
dist_exp = 1.0 if label == 0 else factor**2
|
|
dist_exp = 1.0 if label == 0 else factor**2
|
|
assert_almost_equal(
|
|
dist_sqr, dist_exp, err_msg="Point is not on expected circle"
|
|
)
|
|
|
|
assert X[y == 0].shape == (
|
|
n_outer,
|
|
2,
|
|
), "Samples not correctly distributed across circles."
|
|
assert X[y == 1].shape == (
|
|
n_inner,
|
|
2,
|
|
), "Samples not correctly distributed across circles."
|
|
|
|
with pytest.raises(ValueError):
|
|
make_circles(factor=-0.01)
|
|
with pytest.raises(ValueError):
|
|
make_circles(factor=1.0)
|
|
|
|
|
|
def test_make_circles_unbalanced():
|
|
X, y = make_circles(n_samples=(2, 8))
|
|
|
|
assert np.sum(y == 0) == 2, "Number of samples in inner circle is wrong"
|
|
assert np.sum(y == 1) == 8, "Number of samples in outer circle is wrong"
|
|
assert X.shape == (10, 2), "X shape mismatch"
|
|
assert y.shape == (10,), "y shape mismatch"
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=r"`n_samples` can be either an int " r"or a two-element tuple.",
|
|
):
|
|
make_circles(n_samples=[1, 2, 3])
|
|
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=r"`n_samples` can be either an int " r"or a two-element tuple.",
|
|
):
|
|
make_circles(n_samples=(10,))
|