495 lines
17 KiB
Python
495 lines
17 KiB
Python
import numpy as np
|
|
import scipy.sparse as sp
|
|
from itertools import product
|
|
import pytest
|
|
|
|
from scipy.sparse import issparse
|
|
from scipy.sparse import csc_matrix
|
|
from scipy.sparse import csr_matrix
|
|
from scipy.sparse import coo_matrix
|
|
from scipy.sparse import dok_matrix
|
|
from scipy.sparse import lil_matrix
|
|
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_allclose
|
|
from sklearn.utils.estimator_checks import _NotAnArray
|
|
|
|
from sklearn.utils.multiclass import unique_labels
|
|
from sklearn.utils.multiclass import is_multilabel
|
|
from sklearn.utils.multiclass import type_of_target
|
|
from sklearn.utils.multiclass import class_distribution
|
|
from sklearn.utils.multiclass import check_classification_targets
|
|
from sklearn.utils.multiclass import _ovr_decision_function
|
|
|
|
from sklearn.utils.metaestimators import _safe_split
|
|
from sklearn.model_selection import ShuffleSplit
|
|
from sklearn.svm import SVC
|
|
from sklearn import datasets
|
|
|
|
sparse_multilable_explicit_zero = csc_matrix(np.array([[0, 1], [1, 0]]))
|
|
sparse_multilable_explicit_zero[:, 0] = 0
|
|
|
|
|
|
def _generate_sparse(
|
|
matrix,
|
|
matrix_types=(csr_matrix, csc_matrix, coo_matrix, dok_matrix, lil_matrix),
|
|
dtypes=(bool, int, np.int8, np.uint8, float, np.float32),
|
|
):
|
|
return [
|
|
matrix_type(matrix, dtype=dtype)
|
|
for matrix_type in matrix_types
|
|
for dtype in dtypes
|
|
]
|
|
|
|
|
|
EXAMPLES = {
|
|
"multilabel-indicator": [
|
|
# valid when the data is formatted as sparse or dense, identified
|
|
# by CSR format when the testing takes place
|
|
csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))),
|
|
[[0, 1], [1, 0]],
|
|
[[0, 1]],
|
|
sparse_multilable_explicit_zero,
|
|
*_generate_sparse([[0, 1], [1, 0]]),
|
|
*_generate_sparse([[0, 0], [0, 0]]),
|
|
*_generate_sparse([[0, 1]]),
|
|
# Only valid when data is dense
|
|
[[-1, 1], [1, -1]],
|
|
np.array([[-1, 1], [1, -1]]),
|
|
np.array([[-3, 3], [3, -3]]),
|
|
_NotAnArray(np.array([[-3, 3], [3, -3]])),
|
|
],
|
|
"multiclass": [
|
|
[1, 0, 2, 2, 1, 4, 2, 4, 4, 4],
|
|
np.array([1, 0, 2]),
|
|
np.array([1, 0, 2], dtype=np.int8),
|
|
np.array([1, 0, 2], dtype=np.uint8),
|
|
np.array([1, 0, 2], dtype=float),
|
|
np.array([1, 0, 2], dtype=np.float32),
|
|
np.array([[1], [0], [2]]),
|
|
_NotAnArray(np.array([1, 0, 2])),
|
|
[0, 1, 2],
|
|
["a", "b", "c"],
|
|
np.array(["a", "b", "c"]),
|
|
np.array(["a", "b", "c"], dtype=object),
|
|
np.array(["a", "b", "c"], dtype=object),
|
|
],
|
|
"multiclass-multioutput": [
|
|
[[1, 0, 2, 2], [1, 4, 2, 4]],
|
|
[["a", "b"], ["c", "d"]],
|
|
np.array([[1, 0, 2, 2], [1, 4, 2, 4]]),
|
|
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8),
|
|
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8),
|
|
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=float),
|
|
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32),
|
|
*_generate_sparse(
|
|
[[1, 0, 2, 2], [1, 4, 2, 4]],
|
|
matrix_types=(csr_matrix, csc_matrix),
|
|
dtypes=(int, np.int8, np.uint8, float, np.float32),
|
|
),
|
|
np.array([["a", "b"], ["c", "d"]]),
|
|
np.array([["a", "b"], ["c", "d"]]),
|
|
np.array([["a", "b"], ["c", "d"]], dtype=object),
|
|
np.array([[1, 0, 2]]),
|
|
_NotAnArray(np.array([[1, 0, 2]])),
|
|
],
|
|
"binary": [
|
|
[0, 1],
|
|
[1, 1],
|
|
[],
|
|
[0],
|
|
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]),
|
|
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=bool),
|
|
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8),
|
|
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8),
|
|
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=float),
|
|
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32),
|
|
np.array([[0], [1]]),
|
|
_NotAnArray(np.array([[0], [1]])),
|
|
[1, -1],
|
|
[3, 5],
|
|
["a"],
|
|
["a", "b"],
|
|
["abc", "def"],
|
|
np.array(["abc", "def"]),
|
|
["a", "b"],
|
|
np.array(["abc", "def"], dtype=object),
|
|
],
|
|
"continuous": [
|
|
[1e-5],
|
|
[0, 0.5],
|
|
np.array([[0], [0.5]]),
|
|
np.array([[0], [0.5]], dtype=np.float32),
|
|
],
|
|
"continuous-multioutput": [
|
|
np.array([[0, 0.5], [0.5, 0]]),
|
|
np.array([[0, 0.5], [0.5, 0]], dtype=np.float32),
|
|
np.array([[0, 0.5]]),
|
|
*_generate_sparse(
|
|
[[0, 0.5], [0.5, 0]],
|
|
matrix_types=(csr_matrix, csc_matrix),
|
|
dtypes=(float, np.float32),
|
|
),
|
|
*_generate_sparse(
|
|
[[0, 0.5]],
|
|
matrix_types=(csr_matrix, csc_matrix),
|
|
dtypes=(float, np.float32),
|
|
),
|
|
],
|
|
"unknown": [
|
|
[[]],
|
|
np.array([[]], dtype=object),
|
|
[()],
|
|
# sequence of sequences that weren't supported even before deprecation
|
|
np.array([np.array([]), np.array([1, 2, 3])], dtype=object),
|
|
[np.array([]), np.array([1, 2, 3])],
|
|
[{1, 2, 3}, {1, 2}],
|
|
[frozenset([1, 2, 3]), frozenset([1, 2])],
|
|
# and also confusable as sequences of sequences
|
|
[{0: "a", 1: "b"}, {0: "a"}],
|
|
# ndim 0
|
|
np.array(0),
|
|
# empty second dimension
|
|
np.array([[], []]),
|
|
# 3d
|
|
np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]),
|
|
],
|
|
}
|
|
|
|
NON_ARRAY_LIKE_EXAMPLES = [
|
|
{1, 2, 3},
|
|
{0: "a", 1: "b"},
|
|
{0: [5], 1: [5]},
|
|
"abc",
|
|
frozenset([1, 2, 3]),
|
|
None,
|
|
]
|
|
|
|
MULTILABEL_SEQUENCES = [
|
|
[[1], [2], [0, 1]],
|
|
[(), (2), (0, 1)],
|
|
np.array([[], [1, 2]], dtype="object"),
|
|
_NotAnArray(np.array([[], [1, 2]], dtype="object")),
|
|
]
|
|
|
|
|
|
def test_unique_labels():
|
|
# Empty iterable
|
|
with pytest.raises(ValueError):
|
|
unique_labels()
|
|
|
|
# Multiclass problem
|
|
assert_array_equal(unique_labels(range(10)), np.arange(10))
|
|
assert_array_equal(unique_labels(np.arange(10)), np.arange(10))
|
|
assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4]))
|
|
|
|
# Multilabel indicator
|
|
assert_array_equal(
|
|
unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)
|
|
)
|
|
|
|
assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3))
|
|
|
|
# Several arrays passed
|
|
assert_array_equal(unique_labels([4, 0, 2], range(5)), np.arange(5))
|
|
assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3))
|
|
|
|
# Border line case with binary indicator matrix
|
|
with pytest.raises(ValueError):
|
|
unique_labels([4, 0, 2], np.ones((5, 5)))
|
|
with pytest.raises(ValueError):
|
|
unique_labels(np.ones((5, 4)), np.ones((5, 5)))
|
|
|
|
assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5))
|
|
|
|
|
|
def test_unique_labels_non_specific():
|
|
# Test unique_labels with a variety of collected examples
|
|
|
|
# Smoke test for all supported format
|
|
for format in ["binary", "multiclass", "multilabel-indicator"]:
|
|
for y in EXAMPLES[format]:
|
|
unique_labels(y)
|
|
|
|
# We don't support those format at the moment
|
|
for example in NON_ARRAY_LIKE_EXAMPLES:
|
|
with pytest.raises(ValueError):
|
|
unique_labels(example)
|
|
|
|
for y_type in [
|
|
"unknown",
|
|
"continuous",
|
|
"continuous-multioutput",
|
|
"multiclass-multioutput",
|
|
]:
|
|
for example in EXAMPLES[y_type]:
|
|
with pytest.raises(ValueError):
|
|
unique_labels(example)
|
|
|
|
|
|
def test_unique_labels_mixed_types():
|
|
# Mix with binary or multiclass and multilabel
|
|
mix_clf_format = product(
|
|
EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]
|
|
)
|
|
|
|
for y_multilabel, y_multiclass in mix_clf_format:
|
|
with pytest.raises(ValueError):
|
|
unique_labels(y_multiclass, y_multilabel)
|
|
with pytest.raises(ValueError):
|
|
unique_labels(y_multilabel, y_multiclass)
|
|
|
|
with pytest.raises(ValueError):
|
|
unique_labels([[1, 2]], [["a", "d"]])
|
|
|
|
with pytest.raises(ValueError):
|
|
unique_labels(["1", 2])
|
|
|
|
with pytest.raises(ValueError):
|
|
unique_labels([["1", 2], [1, 3]])
|
|
|
|
with pytest.raises(ValueError):
|
|
unique_labels([["1", "2"], [2, 3]])
|
|
|
|
|
|
def test_is_multilabel():
|
|
for group, group_examples in EXAMPLES.items():
|
|
if group in ["multilabel-indicator"]:
|
|
dense_exp = True
|
|
else:
|
|
dense_exp = False
|
|
|
|
for example in group_examples:
|
|
# Only mark explicitly defined sparse examples as valid sparse
|
|
# multilabel-indicators
|
|
if group == "multilabel-indicator" and issparse(example):
|
|
sparse_exp = True
|
|
else:
|
|
sparse_exp = False
|
|
|
|
if issparse(example) or (
|
|
hasattr(example, "__array__")
|
|
and np.asarray(example).ndim == 2
|
|
and np.asarray(example).dtype.kind in "biuf"
|
|
and np.asarray(example).shape[1] > 0
|
|
):
|
|
examples_sparse = [
|
|
sparse_matrix(example)
|
|
for sparse_matrix in [
|
|
coo_matrix,
|
|
csc_matrix,
|
|
csr_matrix,
|
|
dok_matrix,
|
|
lil_matrix,
|
|
]
|
|
]
|
|
for exmpl_sparse in examples_sparse:
|
|
assert sparse_exp == is_multilabel(
|
|
exmpl_sparse
|
|
), "is_multilabel(%r) should be %s" % (exmpl_sparse, sparse_exp)
|
|
|
|
# Densify sparse examples before testing
|
|
if issparse(example):
|
|
example = example.toarray()
|
|
|
|
assert dense_exp == is_multilabel(
|
|
example
|
|
), "is_multilabel(%r) should be %s" % (example, dense_exp)
|
|
|
|
|
|
def test_check_classification_targets():
|
|
for y_type in EXAMPLES.keys():
|
|
if y_type in ["unknown", "continuous", "continuous-multioutput"]:
|
|
for example in EXAMPLES[y_type]:
|
|
msg = "Unknown label type: "
|
|
with pytest.raises(ValueError, match=msg):
|
|
check_classification_targets(example)
|
|
else:
|
|
for example in EXAMPLES[y_type]:
|
|
check_classification_targets(example)
|
|
|
|
|
|
# @ignore_warnings
|
|
def test_type_of_target():
|
|
for group, group_examples in EXAMPLES.items():
|
|
for example in group_examples:
|
|
assert (
|
|
type_of_target(example) == group
|
|
), "type_of_target(%r) should be %r, got %r" % (
|
|
example,
|
|
group,
|
|
type_of_target(example),
|
|
)
|
|
|
|
for example in NON_ARRAY_LIKE_EXAMPLES:
|
|
msg_regex = r"Expected array-like \(array or non-string sequence\).*"
|
|
with pytest.raises(ValueError, match=msg_regex):
|
|
type_of_target(example)
|
|
|
|
for example in MULTILABEL_SEQUENCES:
|
|
msg = (
|
|
"You appear to be using a legacy multi-label data "
|
|
"representation. Sequence of sequences are no longer supported;"
|
|
" use a binary array or sparse matrix instead."
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
type_of_target(example)
|
|
|
|
|
|
def test_type_of_target_pandas_sparse():
|
|
pd = pytest.importorskip("pandas")
|
|
|
|
y = pd.arrays.SparseArray([1, np.nan, np.nan, 1, np.nan])
|
|
msg = "y cannot be class 'SparseSeries' or 'SparseArray'"
|
|
with pytest.raises(ValueError, match=msg):
|
|
type_of_target(y)
|
|
|
|
|
|
def test_type_of_target_pandas_nullable():
|
|
"""Check that type_of_target works with pandas nullable dtypes."""
|
|
pd = pytest.importorskip("pandas")
|
|
|
|
for dtype in ["Int32", "Float32"]:
|
|
y_true = pd.Series([1, 0, 2, 3, 4], dtype=dtype)
|
|
assert type_of_target(y_true) == "multiclass"
|
|
|
|
y_true = pd.Series([1, 0, 1, 0], dtype=dtype)
|
|
assert type_of_target(y_true) == "binary"
|
|
|
|
y_true = pd.DataFrame([[1.4, 3.1], [3.1, 1.4]], dtype="Float32")
|
|
assert type_of_target(y_true) == "continuous-multioutput"
|
|
|
|
y_true = pd.DataFrame([[0, 1], [1, 1]], dtype="Int32")
|
|
assert type_of_target(y_true) == "multilabel-indicator"
|
|
|
|
y_true = pd.DataFrame([[1, 2], [3, 1]], dtype="Int32")
|
|
assert type_of_target(y_true) == "multiclass-multioutput"
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
|
|
def test_unique_labels_pandas_nullable(dtype):
|
|
"""Checks that unique_labels work with pandas nullable dtypes.
|
|
|
|
Non-regression test for gh-25634.
|
|
"""
|
|
pd = pytest.importorskip("pandas")
|
|
|
|
y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype)
|
|
y_predicted = pd.Series([0, 0, 1, 1, 0, 1, 1, 1, 1], dtype="int64")
|
|
|
|
labels = unique_labels(y_true, y_predicted)
|
|
assert_array_equal(labels, [0, 1])
|
|
|
|
|
|
def test_class_distribution():
|
|
y = np.array(
|
|
[
|
|
[1, 0, 0, 1],
|
|
[2, 2, 0, 1],
|
|
[1, 3, 0, 1],
|
|
[4, 2, 0, 1],
|
|
[2, 0, 0, 1],
|
|
[1, 3, 0, 1],
|
|
]
|
|
)
|
|
# Define the sparse matrix with a mix of implicit and explicit zeros
|
|
data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1])
|
|
indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5])
|
|
indptr = np.array([0, 6, 11, 11, 17])
|
|
y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4))
|
|
|
|
classes, n_classes, class_prior = class_distribution(y)
|
|
classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp)
|
|
classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]]
|
|
n_classes_expected = [3, 3, 1, 1]
|
|
class_prior_expected = [[3 / 6, 2 / 6, 1 / 6], [1 / 3, 1 / 3, 1 / 3], [1.0], [1.0]]
|
|
|
|
for k in range(y.shape[1]):
|
|
assert_array_almost_equal(classes[k], classes_expected[k])
|
|
assert_array_almost_equal(n_classes[k], n_classes_expected[k])
|
|
assert_array_almost_equal(class_prior[k], class_prior_expected[k])
|
|
|
|
assert_array_almost_equal(classes_sp[k], classes_expected[k])
|
|
assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k])
|
|
assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
|
|
|
|
# Test again with explicit sample weights
|
|
(classes, n_classes, class_prior) = class_distribution(
|
|
y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]
|
|
)
|
|
(classes_sp, n_classes_sp, class_prior_sp) = class_distribution(
|
|
y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]
|
|
)
|
|
class_prior_expected = [[4 / 9, 3 / 9, 2 / 9], [2 / 9, 4 / 9, 3 / 9], [1.0], [1.0]]
|
|
|
|
for k in range(y.shape[1]):
|
|
assert_array_almost_equal(classes[k], classes_expected[k])
|
|
assert_array_almost_equal(n_classes[k], n_classes_expected[k])
|
|
assert_array_almost_equal(class_prior[k], class_prior_expected[k])
|
|
|
|
assert_array_almost_equal(classes_sp[k], classes_expected[k])
|
|
assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k])
|
|
assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
|
|
|
|
|
|
def test_safe_split_with_precomputed_kernel():
|
|
clf = SVC()
|
|
clfp = SVC(kernel="precomputed")
|
|
|
|
iris = datasets.load_iris()
|
|
X, y = iris.data, iris.target
|
|
K = np.dot(X, X.T)
|
|
|
|
cv = ShuffleSplit(test_size=0.25, random_state=0)
|
|
train, test = list(cv.split(X))[0]
|
|
|
|
X_train, y_train = _safe_split(clf, X, y, train)
|
|
K_train, y_train2 = _safe_split(clfp, K, y, train)
|
|
assert_array_almost_equal(K_train, np.dot(X_train, X_train.T))
|
|
assert_array_almost_equal(y_train, y_train2)
|
|
|
|
X_test, y_test = _safe_split(clf, X, y, test, train)
|
|
K_test, y_test2 = _safe_split(clfp, K, y, test, train)
|
|
assert_array_almost_equal(K_test, np.dot(X_test, X_train.T))
|
|
assert_array_almost_equal(y_test, y_test2)
|
|
|
|
|
|
def test_ovr_decision_function():
|
|
# test properties for ovr decision function
|
|
|
|
predictions = np.array([[0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]])
|
|
|
|
confidences = np.array(
|
|
[[-1e16, 0, -1e16], [1.0, 2.0, -3.0], [-5.0, 2.0, 5.0], [-0.5, 0.2, 0.5]]
|
|
)
|
|
|
|
n_classes = 3
|
|
|
|
dec_values = _ovr_decision_function(predictions, confidences, n_classes)
|
|
|
|
# check that the decision values are within 0.5 range of the votes
|
|
votes = np.array([[1, 0, 2], [1, 1, 1], [1, 0, 2], [1, 0, 2]])
|
|
|
|
assert_allclose(votes, dec_values, atol=0.5)
|
|
|
|
# check that the prediction are what we expect
|
|
# highest vote or highest confidence if there is a tie.
|
|
# for the second sample we have a tie (should be won by 1)
|
|
expected_prediction = np.array([2, 1, 2, 2])
|
|
assert_array_equal(np.argmax(dec_values, axis=1), expected_prediction)
|
|
|
|
# third and fourth sample have the same vote but third sample
|
|
# has higher confidence, this should reflect on the decision values
|
|
assert dec_values[2, 2] > dec_values[3, 2]
|
|
|
|
# assert subset invariance.
|
|
dec_values_one = [
|
|
_ovr_decision_function(
|
|
np.array([predictions[i]]), np.array([confidences[i]]), n_classes
|
|
)[0]
|
|
for i in range(4)
|
|
]
|
|
|
|
assert_allclose(dec_values, dec_values_one, atol=1e-6)
|