116 lines
3.3 KiB
Python
116 lines
3.3 KiB
Python
from __future__ import annotations
|
|
|
|
from ._dtypes import (
|
|
_floating_dtypes,
|
|
_numeric_dtypes,
|
|
)
|
|
from ._array_object import Array
|
|
from ._creation_functions import asarray
|
|
from ._dtypes import float32, float64
|
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
|
|
|
if TYPE_CHECKING:
|
|
from ._typing import Dtype
|
|
|
|
import numpy as np
|
|
|
|
|
|
def max(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
if x.dtype not in _numeric_dtypes:
|
|
raise TypeError("Only numeric dtypes are allowed in max")
|
|
return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
|
|
|
|
|
|
def mean(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
if x.dtype not in _floating_dtypes:
|
|
raise TypeError("Only floating-point dtypes are allowed in mean")
|
|
return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
|
|
|
|
|
|
def min(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
if x.dtype not in _numeric_dtypes:
|
|
raise TypeError("Only numeric dtypes are allowed in min")
|
|
return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
|
|
|
|
|
|
def prod(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype: Optional[Dtype] = None,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
if x.dtype not in _numeric_dtypes:
|
|
raise TypeError("Only numeric dtypes are allowed in prod")
|
|
# Note: sum() and prod() always upcast float32 to float64 for dtype=None
|
|
# We need to do so here before computing the product to avoid overflow
|
|
if dtype is None and x.dtype == float32:
|
|
dtype = float64
|
|
return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
|
|
|
|
|
|
def std(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
correction: Union[int, float] = 0.0,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
# Note: the keyword argument correction is different here
|
|
if x.dtype not in _floating_dtypes:
|
|
raise TypeError("Only floating-point dtypes are allowed in std")
|
|
return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
|
|
|
|
|
|
def sum(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype: Optional[Dtype] = None,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
if x.dtype not in _numeric_dtypes:
|
|
raise TypeError("Only numeric dtypes are allowed in sum")
|
|
# Note: sum() and prod() always upcast integers to (u)int64 and float32 to
|
|
# float64 for dtype=None. `np.sum` does that too for integers, but not for
|
|
# float32, so we need to special-case it here
|
|
if dtype is None and x.dtype == float32:
|
|
dtype = float64
|
|
return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
|
|
|
|
|
|
def var(
|
|
x: Array,
|
|
/,
|
|
*,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
correction: Union[int, float] = 0.0,
|
|
keepdims: bool = False,
|
|
) -> Array:
|
|
# Note: the keyword argument correction is different here
|
|
if x.dtype not in _floating_dtypes:
|
|
raise TypeError("Only floating-point dtypes are allowed in var")
|
|
return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))
|