Inzynierka/Lib/site-packages/pandas/core/groupby/grouper.py
2023-06-02 12:51:02 +02:00

1045 lines
35 KiB
Python

"""
Provide user facing operators for doing the split part of the
split-apply-combine paradigm.
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Hashable,
Iterator,
final,
)
import warnings
import numpy as np
from pandas._config import using_copy_on_write
from pandas._typing import (
ArrayLike,
Axis,
NDFrameT,
npt,
)
from pandas.errors import InvalidIndexError
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import (
is_categorical_dtype,
is_list_like,
is_scalar,
)
from pandas.core import algorithms
from pandas.core.arrays import (
Categorical,
ExtensionArray,
)
import pandas.core.common as com
from pandas.core.frame import DataFrame
from pandas.core.groupby import ops
from pandas.core.groupby.categorical import recode_for_groupby
from pandas.core.indexes.api import (
CategoricalIndex,
Index,
MultiIndex,
)
from pandas.core.series import Series
from pandas.io.formats.printing import pprint_thing
if TYPE_CHECKING:
from pandas.core.generic import NDFrame
class Grouper:
"""
A Grouper allows the user to specify a groupby instruction for an object.
This specification will select a column via the key parameter, or if the
level and/or axis parameters are given, a level of the index of the target
object.
If `axis` and/or `level` are passed as keywords to both `Grouper` and
`groupby`, the values passed to `Grouper` take precedence.
Parameters
----------
key : str, defaults to None
Groupby key, which selects the grouping column of the target.
level : name/number, defaults to None
The level for the target index.
freq : str / frequency object, defaults to None
This will groupby the specified frequency if the target selection
(via key or level) is a datetime-like object. For full specification
of available frequencies, please see `here
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
axis : str, int, defaults to 0
Number/name of the axis.
sort : bool, default to False
Whether to sort the resulting labels.
closed : {'left' or 'right'}
Closed end of interval. Only when `freq` parameter is passed.
label : {'left' or 'right'}
Interval boundary to use for labeling.
Only when `freq` parameter is passed.
convention : {'start', 'end', 'e', 's'}
If grouper is PeriodIndex and `freq` parameter is passed.
origin : Timestamp or str, default 'start_day'
The timestamp on which to adjust the grouping. The timezone of origin must
match the timezone of the index.
If string, must be one of the following:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
.. versionadded:: 1.1.0
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
.. versionadded:: 1.3.0
offset : Timedelta or str, default is None
An offset timedelta added to the origin.
.. versionadded:: 1.1.0
dropna : bool, default True
If True, and if group keys contain NA values, NA values together with
row/column will be dropped. If False, NA values will also be treated as
the key in groups.
.. versionadded:: 1.2.0
Returns
-------
A specification for a groupby instruction
Examples
--------
Syntactic sugar for ``df.groupby('A')``
>>> df = pd.DataFrame(
... {
... "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"],
... "Speed": [100, 5, 200, 300, 15],
... }
... )
>>> df
Animal Speed
0 Falcon 100
1 Parrot 5
2 Falcon 200
3 Falcon 300
4 Parrot 15
>>> df.groupby(pd.Grouper(key="Animal")).mean()
Speed
Animal
Falcon 200.0
Parrot 10.0
Specify a resample operation on the column 'Publish date'
>>> df = pd.DataFrame(
... {
... "Publish date": [
... pd.Timestamp("2000-01-02"),
... pd.Timestamp("2000-01-02"),
... pd.Timestamp("2000-01-09"),
... pd.Timestamp("2000-01-16")
... ],
... "ID": [0, 1, 2, 3],
... "Price": [10, 20, 30, 40]
... }
... )
>>> df
Publish date ID Price
0 2000-01-02 0 10
1 2000-01-02 1 20
2 2000-01-09 2 30
3 2000-01-16 3 40
>>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean()
ID Price
Publish date
2000-01-02 0.5 15.0
2000-01-09 2.0 30.0
2000-01-16 3.0 40.0
If you want to adjust the start of the bins based on a fixed timestamp:
>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
>>> rng = pd.date_range(start, end, freq='7min')
>>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
>>> ts
2000-10-01 23:30:00 0
2000-10-01 23:37:00 3
2000-10-01 23:44:00 6
2000-10-01 23:51:00 9
2000-10-01 23:58:00 12
2000-10-02 00:05:00 15
2000-10-02 00:12:00 18
2000-10-02 00:19:00 21
2000-10-02 00:26:00 24
Freq: 7T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min')).sum()
2000-10-01 23:14:00 0
2000-10-01 23:31:00 9
2000-10-01 23:48:00 21
2000-10-02 00:05:00 54
2000-10-02 00:22:00 24
Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum()
2000-10-01 23:18:00 0
2000-10-01 23:35:00 18
2000-10-01 23:52:00 27
2000-10-02 00:09:00 39
2000-10-02 00:26:00 24
Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum()
2000-10-01 23:24:00 3
2000-10-01 23:41:00 15
2000-10-01 23:58:00 45
2000-10-02 00:15:00 45
Freq: 17T, dtype: int64
If you want to adjust the start of the bins with an `offset` Timedelta, the two
following lines are equivalent:
>>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum()
2000-10-01 23:30:00 9
2000-10-01 23:47:00 21
2000-10-02 00:04:00 54
2000-10-02 00:21:00 24
Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum()
2000-10-01 23:30:00 9
2000-10-01 23:47:00 21
2000-10-02 00:04:00 54
2000-10-02 00:21:00 24
Freq: 17T, dtype: int64
To replace the use of the deprecated `base` argument, you can now use `offset`,
in this example it is equivalent to have `base=2`:
>>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum()
2000-10-01 23:16:00 0
2000-10-01 23:33:00 9
2000-10-01 23:50:00 36
2000-10-02 00:07:00 39
2000-10-02 00:24:00 24
Freq: 17T, dtype: int64
"""
sort: bool
dropna: bool
_gpr_index: Index | None
_grouper: Index | None
_attributes: tuple[str, ...] = ("key", "level", "freq", "axis", "sort", "dropna")
def __new__(cls, *args, **kwargs):
if kwargs.get("freq") is not None:
from pandas.core.resample import TimeGrouper
cls = TimeGrouper
return super().__new__(cls)
def __init__(
self,
key=None,
level=None,
freq=None,
axis: Axis = 0,
sort: bool = False,
dropna: bool = True,
) -> None:
self.key = key
self.level = level
self.freq = freq
self.axis = axis
self.sort = sort
self.dropna = dropna
self._grouper_deprecated = None
self._indexer_deprecated = None
self._obj_deprecated = None
self._gpr_index = None
self.binner = None
self._grouper = None
self._indexer = None
def _get_grouper(
self, obj: NDFrameT, validate: bool = True
) -> tuple[ops.BaseGrouper, NDFrameT]:
"""
Parameters
----------
obj : Series or DataFrame
validate : bool, default True
if True, validate the grouper
Returns
-------
a tuple of grouper, obj (possibly sorted)
"""
obj, _, _ = self._set_grouper(obj)
grouper, _, obj = get_grouper(
obj,
[self.key],
axis=self.axis,
level=self.level,
sort=self.sort,
validate=validate,
dropna=self.dropna,
)
# Without setting this, subsequent lookups to .groups raise
# error: Incompatible types in assignment (expression has type "BaseGrouper",
# variable has type "None")
self._grouper_deprecated = grouper # type: ignore[assignment]
return grouper, obj
@final
def _set_grouper(
self, obj: NDFrame, sort: bool = False, *, gpr_index: Index | None = None
):
"""
given an object and the specifications, setup the internal grouper
for this particular specification
Parameters
----------
obj : Series or DataFrame
sort : bool, default False
whether the resulting grouper should be sorted
gpr_index : Index or None, default None
Returns
-------
NDFrame
Index
np.ndarray[np.intp] | None
"""
assert obj is not None
indexer = None
if self.key is not None and self.level is not None:
raise ValueError("The Grouper cannot specify both a key and a level!")
# Keep self._grouper value before overriding
if self._grouper is None:
# TODO: What are we assuming about subsequent calls?
self._grouper = gpr_index
self._indexer = self._indexer_deprecated
# the key must be a valid info item
if self.key is not None:
key = self.key
# The 'on' is already defined
if getattr(gpr_index, "name", None) == key and isinstance(obj, Series):
# Sometimes self._grouper will have been resorted while
# obj has not. In this case there is a mismatch when we
# call self._grouper.take(obj.index) so we need to undo the sorting
# before we call _grouper.take.
assert self._grouper is not None
if self._indexer is not None:
reverse_indexer = self._indexer.argsort()
unsorted_ax = self._grouper.take(reverse_indexer)
ax = unsorted_ax.take(obj.index)
else:
ax = self._grouper.take(obj.index)
else:
if key not in obj._info_axis:
raise KeyError(f"The grouper name {key} is not found")
ax = Index(obj[key], name=key)
else:
ax = obj._get_axis(self.axis)
if self.level is not None:
level = self.level
# if a level is given it must be a mi level or
# equivalent to the axis name
if isinstance(ax, MultiIndex):
level = ax._get_level_number(level)
ax = Index(ax._get_level_values(level), name=ax.names[level])
else:
if level not in (0, ax.name):
raise ValueError(f"The level {level} is not valid")
# possibly sort
if (self.sort or sort) and not ax.is_monotonic_increasing:
# use stable sort to support first, last, nth
# TODO: why does putting na_position="first" fix datetimelike cases?
indexer = self._indexer_deprecated = ax.array.argsort(
kind="mergesort", na_position="first"
)
ax = ax.take(indexer)
obj = obj.take(indexer, axis=self.axis)
# error: Incompatible types in assignment (expression has type
# "NDFrameT", variable has type "None")
self._obj_deprecated = obj # type: ignore[assignment]
self._gpr_index = ax
return obj, ax, indexer
@final
@property
def ax(self) -> Index:
warnings.warn(
f"{type(self).__name__}.ax is deprecated and will be removed in a "
"future version. Use Resampler.ax instead",
FutureWarning,
stacklevel=find_stack_level(),
)
index = self._gpr_index
if index is None:
raise ValueError("_set_grouper must be called before ax is accessed")
return index
@final
@property
def indexer(self):
warnings.warn(
f"{type(self).__name__}.indexer is deprecated and will be removed "
"in a future version. Use Resampler.indexer instead.",
FutureWarning,
stacklevel=find_stack_level(),
)
return self._indexer_deprecated
@final
@property
def obj(self):
warnings.warn(
f"{type(self).__name__}.obj is deprecated and will be removed "
"in a future version. Use GroupBy.indexer instead.",
FutureWarning,
stacklevel=find_stack_level(),
)
return self._obj_deprecated
@final
@property
def grouper(self):
warnings.warn(
f"{type(self).__name__}.grouper is deprecated and will be removed "
"in a future version. Use GroupBy.grouper instead.",
FutureWarning,
stacklevel=find_stack_level(),
)
return self._grouper_deprecated
@final
@property
def groups(self):
warnings.warn(
f"{type(self).__name__}.groups is deprecated and will be removed "
"in a future version. Use GroupBy.groups instead.",
FutureWarning,
stacklevel=find_stack_level(),
)
# error: "None" has no attribute "groups"
return self._grouper_deprecated.groups # type: ignore[attr-defined]
@final
def __repr__(self) -> str:
attrs_list = (
f"{attr_name}={repr(getattr(self, attr_name))}"
for attr_name in self._attributes
if getattr(self, attr_name) is not None
)
attrs = ", ".join(attrs_list)
cls_name = type(self).__name__
return f"{cls_name}({attrs})"
@final
class Grouping:
"""
Holds the grouping information for a single key
Parameters
----------
index : Index
grouper :
obj : DataFrame or Series
name : Label
level :
observed : bool, default False
If we are a Categorical, use the observed values
in_axis : if the Grouping is a column in self.obj and hence among
Groupby.exclusions list
dropna : bool, default True
Whether to drop NA groups.
uniques : Array-like, optional
When specified, will be used for unique values. Enables including empty groups
in the result for a BinGrouper. Must not contain duplicates.
Attributes
-------
indices : dict
Mapping of {group -> index_list}
codes : ndarray
Group codes
group_index : Index or None
unique groups
groups : dict
Mapping of {group -> label_list}
"""
_codes: npt.NDArray[np.signedinteger] | None = None
_group_index: Index | None = None
_all_grouper: Categorical | None
_orig_cats: Index | None
_index: Index
def __init__(
self,
index: Index,
grouper=None,
obj: NDFrame | None = None,
level=None,
sort: bool = True,
observed: bool = False,
in_axis: bool = False,
dropna: bool = True,
uniques: ArrayLike | None = None,
) -> None:
self.level = level
self._orig_grouper = grouper
grouping_vector = _convert_grouper(index, grouper)
self._all_grouper = None
self._orig_cats = None
self._index = index
self._sort = sort
self.obj = obj
self._observed = observed
self.in_axis = in_axis
self._dropna = dropna
self._uniques = uniques
# we have a single grouper which may be a myriad of things,
# some of which are dependent on the passing in level
ilevel = self._ilevel
if ilevel is not None:
# In extant tests, the new self.grouping_vector matches
# `index.get_level_values(ilevel)` whenever
# mapper is None and isinstance(index, MultiIndex)
if isinstance(index, MultiIndex):
index_level = index.get_level_values(ilevel)
else:
index_level = index
if grouping_vector is None:
grouping_vector = index_level
else:
mapper = grouping_vector
grouping_vector = index_level.map(mapper)
# a passed Grouper like, directly get the grouper in the same way
# as single grouper groupby, use the group_info to get codes
elif isinstance(grouping_vector, Grouper):
# get the new grouper; we already have disambiguated
# what key/level refer to exactly, don't need to
# check again as we have by this point converted these
# to an actual value (rather than a pd.Grouper)
assert self.obj is not None # for mypy
newgrouper, newobj = grouping_vector._get_grouper(self.obj, validate=False)
self.obj = newobj
if isinstance(newgrouper, ops.BinGrouper):
# TODO: can we unwrap this and get a tighter typing
# for self.grouping_vector?
grouping_vector = newgrouper
else:
# ops.BaseGrouper
# TODO: 2023-02-03 no test cases with len(newgrouper.groupings) > 1.
# If that were to occur, would we be throwing out information?
# error: Cannot determine type of "grouping_vector" [has-type]
ng = newgrouper.groupings[0].grouping_vector # type: ignore[has-type]
# use Index instead of ndarray so we can recover the name
grouping_vector = Index(ng, name=newgrouper.result_index.name)
elif not isinstance(
grouping_vector, (Series, Index, ExtensionArray, np.ndarray)
):
# no level passed
if getattr(grouping_vector, "ndim", 1) != 1:
t = str(type(grouping_vector))
raise ValueError(f"Grouper for '{t}' not 1-dimensional")
grouping_vector = index.map(grouping_vector)
if not (
hasattr(grouping_vector, "__len__")
and len(grouping_vector) == len(index)
):
grper = pprint_thing(grouping_vector)
errmsg = (
"Grouper result violates len(labels) == "
f"len(data)\nresult: {grper}"
)
raise AssertionError(errmsg)
if isinstance(grouping_vector, np.ndarray):
if grouping_vector.dtype.kind in ["m", "M"]:
# if we have a date/time-like grouper, make sure that we have
# Timestamps like
# TODO 2022-10-08 we only have one test that gets here and
# values are already in nanoseconds in that case.
grouping_vector = Series(grouping_vector).to_numpy()
elif is_categorical_dtype(grouping_vector):
# a passed Categorical
self._orig_cats = grouping_vector.categories
grouping_vector, self._all_grouper = recode_for_groupby(
grouping_vector, sort, observed
)
self.grouping_vector = grouping_vector
def __repr__(self) -> str:
return f"Grouping({self.name})"
def __iter__(self) -> Iterator:
return iter(self.indices)
@cache_readonly
def _passed_categorical(self) -> bool:
return is_categorical_dtype(self.grouping_vector)
@cache_readonly
def name(self) -> Hashable:
ilevel = self._ilevel
if ilevel is not None:
return self._index.names[ilevel]
if isinstance(self._orig_grouper, (Index, Series)):
return self._orig_grouper.name
elif isinstance(self.grouping_vector, ops.BaseGrouper):
return self.grouping_vector.result_index.name
elif isinstance(self.grouping_vector, Index):
return self.grouping_vector.name
# otherwise we have ndarray or ExtensionArray -> no name
return None
@cache_readonly
def _ilevel(self) -> int | None:
"""
If necessary, converted index level name to index level position.
"""
level = self.level
if level is None:
return None
if not isinstance(level, int):
index = self._index
if level not in index.names:
raise AssertionError(f"Level {level} not in index")
return index.names.index(level)
return level
@property
def ngroups(self) -> int:
return len(self.group_index)
@cache_readonly
def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
# we have a list of groupers
if isinstance(self.grouping_vector, ops.BaseGrouper):
return self.grouping_vector.indices
values = Categorical(self.grouping_vector)
return values._reverse_indexer()
@property
def codes(self) -> npt.NDArray[np.signedinteger]:
return self._codes_and_uniques[0]
@cache_readonly
def group_arraylike(self) -> ArrayLike:
"""
Analogous to result_index, but holding an ArrayLike to ensure
we can retain ExtensionDtypes.
"""
if self._all_grouper is not None:
# retain dtype for categories, including unobserved ones
return self.result_index._values
elif self._passed_categorical:
return self.group_index._values
return self._codes_and_uniques[1]
@cache_readonly
def result_index(self) -> Index:
# result_index retains dtype for categories, including unobserved ones,
# which group_index does not
if self._all_grouper is not None:
group_idx = self.group_index
assert isinstance(group_idx, CategoricalIndex)
cats = self._orig_cats
# set_categories is dynamically added
return group_idx.set_categories(cats) # type: ignore[attr-defined]
return self.group_index
@cache_readonly
def group_index(self) -> Index:
codes, uniques = self._codes_and_uniques
if not self._dropna and self._passed_categorical:
assert isinstance(uniques, Categorical)
if self._sort and (codes == len(uniques)).any():
# Add NA value on the end when sorting
uniques = Categorical.from_codes(
np.append(uniques.codes, [-1]), uniques.categories
)
elif len(codes) > 0:
# Need to determine proper placement of NA value when not sorting
cat = self.grouping_vector
na_idx = (cat.codes < 0).argmax()
if cat.codes[na_idx] < 0:
# count number of unique codes that comes before the nan value
na_unique_idx = algorithms.nunique_ints(cat.codes[:na_idx])
uniques = Categorical.from_codes(
np.insert(uniques.codes, na_unique_idx, -1), uniques.categories
)
return Index._with_infer(uniques, name=self.name)
@cache_readonly
def _codes_and_uniques(self) -> tuple[npt.NDArray[np.signedinteger], ArrayLike]:
uniques: ArrayLike
if self._passed_categorical:
# we make a CategoricalIndex out of the cat grouper
# preserving the categories / ordered attributes;
# doesn't (yet - GH#46909) handle dropna=False
cat = self.grouping_vector
categories = cat.categories
if self._observed:
ucodes = algorithms.unique1d(cat.codes)
ucodes = ucodes[ucodes != -1]
if self._sort:
ucodes = np.sort(ucodes)
else:
ucodes = np.arange(len(categories))
uniques = Categorical.from_codes(
codes=ucodes, categories=categories, ordered=cat.ordered
)
codes = cat.codes
if not self._dropna:
na_mask = codes < 0
if np.any(na_mask):
if self._sort:
# Replace NA codes with `largest code + 1`
na_code = len(categories)
codes = np.where(na_mask, na_code, codes)
else:
# Insert NA code into the codes based on first appearance
# A negative code must exist, no need to check codes[na_idx] < 0
na_idx = na_mask.argmax()
# count number of unique codes that comes before the nan value
na_code = algorithms.nunique_ints(codes[:na_idx])
codes = np.where(codes >= na_code, codes + 1, codes)
codes = np.where(na_mask, na_code, codes)
if not self._observed:
uniques = uniques.reorder_categories(self._orig_cats)
return codes, uniques
elif isinstance(self.grouping_vector, ops.BaseGrouper):
# we have a list of groupers
codes = self.grouping_vector.codes_info
uniques = self.grouping_vector.result_index._values
elif self._uniques is not None:
# GH#50486 Code grouping_vector using _uniques; allows
# including uniques that are not present in grouping_vector.
cat = Categorical(self.grouping_vector, categories=self._uniques)
codes = cat.codes
uniques = self._uniques
else:
# GH35667, replace dropna=False with use_na_sentinel=False
# error: Incompatible types in assignment (expression has type "Union[
# ndarray[Any, Any], Index]", variable has type "Categorical")
codes, uniques = algorithms.factorize( # type: ignore[assignment]
self.grouping_vector, sort=self._sort, use_na_sentinel=self._dropna
)
return codes, uniques
@cache_readonly
def groups(self) -> dict[Hashable, np.ndarray]:
return self._index.groupby(Categorical.from_codes(self.codes, self.group_index))
def get_grouper(
obj: NDFrameT,
key=None,
axis: Axis = 0,
level=None,
sort: bool = True,
observed: bool = False,
validate: bool = True,
dropna: bool = True,
) -> tuple[ops.BaseGrouper, frozenset[Hashable], NDFrameT]:
"""
Create and return a BaseGrouper, which is an internal
mapping of how to create the grouper indexers.
This may be composed of multiple Grouping objects, indicating
multiple groupers
Groupers are ultimately index mappings. They can originate as:
index mappings, keys to columns, functions, or Groupers
Groupers enable local references to axis,level,sort, while
the passed in axis, level, and sort are 'global'.
This routine tries to figure out what the passing in references
are and then creates a Grouping for each one, combined into
a BaseGrouper.
If observed & we have a categorical grouper, only show the observed
values.
If validate, then check for key/level overlaps.
"""
group_axis = obj._get_axis(axis)
# validate that the passed single level is compatible with the passed
# axis of the object
if level is not None:
# TODO: These if-block and else-block are almost same.
# MultiIndex instance check is removable, but it seems that there are
# some processes only for non-MultiIndex in else-block,
# eg. `obj.index.name != level`. We have to consider carefully whether
# these are applicable for MultiIndex. Even if these are applicable,
# we need to check if it makes no side effect to subsequent processes
# on the outside of this condition.
# (GH 17621)
if isinstance(group_axis, MultiIndex):
if is_list_like(level) and len(level) == 1:
level = level[0]
if key is None and is_scalar(level):
# Get the level values from group_axis
key = group_axis.get_level_values(level)
level = None
else:
# allow level to be a length-one list-like object
# (e.g., level=[0])
# GH 13901
if is_list_like(level):
nlevels = len(level)
if nlevels == 1:
level = level[0]
elif nlevels == 0:
raise ValueError("No group keys passed!")
else:
raise ValueError("multiple levels only valid with MultiIndex")
if isinstance(level, str):
if obj._get_axis(axis).name != level:
raise ValueError(
f"level name {level} is not the name "
f"of the {obj._get_axis_name(axis)}"
)
elif level > 0 or level < -1:
raise ValueError("level > 0 or level < -1 only valid with MultiIndex")
# NOTE: `group_axis` and `group_axis.get_level_values(level)`
# are same in this section.
level = None
key = group_axis
# a passed-in Grouper, directly convert
if isinstance(key, Grouper):
grouper, obj = key._get_grouper(obj, validate=False)
if key.key is None:
return grouper, frozenset(), obj
else:
return grouper, frozenset({key.key}), obj
# already have a BaseGrouper, just return it
elif isinstance(key, ops.BaseGrouper):
return key, frozenset(), obj
if not isinstance(key, list):
keys = [key]
match_axis_length = False
else:
keys = key
match_axis_length = len(keys) == len(group_axis)
# what are we after, exactly?
any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
any_groupers = any(isinstance(g, (Grouper, Grouping)) for g in keys)
any_arraylike = any(
isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys
)
# is this an index replacement?
if (
not any_callable
and not any_arraylike
and not any_groupers
and match_axis_length
and level is None
):
if isinstance(obj, DataFrame):
all_in_columns_index = all(
g in obj.columns or g in obj.index.names for g in keys
)
else:
assert isinstance(obj, Series)
all_in_columns_index = all(g in obj.index.names for g in keys)
if not all_in_columns_index:
keys = [com.asarray_tuplesafe(keys)]
if isinstance(level, (tuple, list)):
if key is None:
keys = [None] * len(level)
levels = level
else:
levels = [level] * len(keys)
groupings: list[Grouping] = []
exclusions: set[Hashable] = set()
# if the actual grouper should be obj[key]
def is_in_axis(key) -> bool:
if not _is_label_like(key):
if obj.ndim == 1:
return False
# items -> .columns for DataFrame, .index for Series
items = obj.axes[-1]
try:
items.get_loc(key)
except (KeyError, TypeError, InvalidIndexError):
# TypeError shows up here if we pass e.g. an Index
return False
return True
# if the grouper is obj[name]
def is_in_obj(gpr) -> bool:
if not hasattr(gpr, "name"):
return False
if using_copy_on_write():
# For the CoW case, we check the references to determine if the
# series is part of the object
try:
obj_gpr_column = obj[gpr.name]
except (KeyError, IndexError, InvalidIndexError):
return False
if isinstance(gpr, Series) and isinstance(obj_gpr_column, Series):
return gpr._mgr.references_same_values( # type: ignore[union-attr]
obj_gpr_column._mgr, 0 # type: ignore[arg-type]
)
return False
try:
return gpr is obj[gpr.name]
except (KeyError, IndexError, InvalidIndexError):
# IndexError reached in e.g. test_skip_group_keys when we pass
# lambda here
# InvalidIndexError raised on key-types inappropriate for index,
# e.g. DatetimeIndex.get_loc(tuple())
return False
for gpr, level in zip(keys, levels):
if is_in_obj(gpr): # df.groupby(df['name'])
in_axis = True
exclusions.add(gpr.name)
elif is_in_axis(gpr): # df.groupby('name')
if obj.ndim != 1 and gpr in obj:
if validate:
obj._check_label_or_level_ambiguity(gpr, axis=axis)
in_axis, name, gpr = True, gpr, obj[gpr]
if gpr.ndim != 1:
# non-unique columns; raise here to get the name in the
# exception message
raise ValueError(f"Grouper for '{name}' not 1-dimensional")
exclusions.add(name)
elif obj._is_level_reference(gpr, axis=axis):
in_axis, level, gpr = False, gpr, None
else:
raise KeyError(gpr)
elif isinstance(gpr, Grouper) and gpr.key is not None:
# Add key to exclusions
exclusions.add(gpr.key)
in_axis = True
else:
in_axis = False
# create the Grouping
# allow us to passing the actual Grouping as the gpr
ping = (
Grouping(
group_axis,
gpr,
obj=obj,
level=level,
sort=sort,
observed=observed,
in_axis=in_axis,
dropna=dropna,
)
if not isinstance(gpr, Grouping)
else gpr
)
groupings.append(ping)
if len(groupings) == 0 and len(obj):
raise ValueError("No group keys passed!")
if len(groupings) == 0:
groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))
# create the internals grouper
grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, dropna=dropna)
return grouper, frozenset(exclusions), obj
def _is_label_like(val) -> bool:
return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val))
def _convert_grouper(axis: Index, grouper):
if isinstance(grouper, dict):
return grouper.get
elif isinstance(grouper, Series):
if grouper.index.equals(axis):
return grouper._values
else:
return grouper.reindex(axis)._values
elif isinstance(grouper, MultiIndex):
return grouper._values
elif isinstance(grouper, (list, tuple, Index, Categorical, np.ndarray)):
if len(grouper) != len(axis):
raise ValueError("Grouper and axis must be same length")
if isinstance(grouper, (list, tuple)):
grouper = com.asarray_tuplesafe(grouper)
return grouper
else:
return grouper