Inzynierka/Lib/site-packages/pandas/core/indexes/interval.py
2023-06-02 12:51:02 +02:00

1138 lines
38 KiB
Python

""" define the IntervalIndex """
from __future__ import annotations
from operator import (
le,
lt,
)
import textwrap
from typing import (
Any,
Hashable,
Literal,
)
import numpy as np
from pandas._libs import lib
from pandas._libs.interval import (
Interval,
IntervalMixin,
IntervalTree,
)
from pandas._libs.tslibs import (
BaseOffset,
Timedelta,
Timestamp,
to_offset,
)
from pandas._typing import (
Dtype,
DtypeObj,
IntervalClosedType,
npt,
)
from pandas.errors import InvalidIndexError
from pandas.util._decorators import (
Appender,
cache_readonly,
)
from pandas.util._exceptions import rewrite_exception
from pandas.core.dtypes.cast import (
find_common_type,
infer_dtype_from_scalar,
maybe_box_datetimelike,
maybe_downcast_numeric,
maybe_upcast_numeric_to_64bit,
)
from pandas.core.dtypes.common import (
ensure_platform_int,
is_datetime64tz_dtype,
is_datetime_or_timedelta_dtype,
is_dtype_equal,
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
is_interval_dtype,
is_list_like,
is_number,
is_object_dtype,
is_scalar,
)
from pandas.core.dtypes.dtypes import IntervalDtype
from pandas.core.dtypes.missing import is_valid_na_for_dtype
from pandas.core.algorithms import unique
from pandas.core.arrays.interval import (
IntervalArray,
_interval_shared_docs,
)
import pandas.core.common as com
from pandas.core.indexers import is_valid_positional_slice
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import (
Index,
_index_shared_docs,
ensure_index,
maybe_extract_name,
)
from pandas.core.indexes.datetimes import (
DatetimeIndex,
date_range,
)
from pandas.core.indexes.extension import (
ExtensionIndex,
inherit_names,
)
from pandas.core.indexes.multi import MultiIndex
from pandas.core.indexes.timedeltas import (
TimedeltaIndex,
timedelta_range,
)
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update(
{
"klass": "IntervalIndex",
"qualname": "IntervalIndex",
"target_klass": "IntervalIndex or list of Intervals",
"name": textwrap.dedent(
"""\
name : object, optional
Name to be stored in the index.
"""
),
}
)
def _get_next_label(label):
dtype = getattr(label, "dtype", type(label))
if isinstance(label, (Timestamp, Timedelta)):
dtype = "datetime64"
if is_datetime_or_timedelta_dtype(dtype) or is_datetime64tz_dtype(dtype):
return label + np.timedelta64(1, "ns")
elif is_integer_dtype(dtype):
return label + 1
elif is_float_dtype(dtype):
return np.nextafter(label, np.infty)
else:
raise TypeError(f"cannot determine next label for type {repr(type(label))}")
def _get_prev_label(label):
dtype = getattr(label, "dtype", type(label))
if isinstance(label, (Timestamp, Timedelta)):
dtype = "datetime64"
if is_datetime_or_timedelta_dtype(dtype) or is_datetime64tz_dtype(dtype):
return label - np.timedelta64(1, "ns")
elif is_integer_dtype(dtype):
return label - 1
elif is_float_dtype(dtype):
return np.nextafter(label, -np.infty)
else:
raise TypeError(f"cannot determine next label for type {repr(type(label))}")
def _new_IntervalIndex(cls, d):
"""
This is called upon unpickling, rather than the default which doesn't have
arguments and breaks __new__.
"""
return cls.from_arrays(**d)
@Appender(
_interval_shared_docs["class"]
% {
"klass": "IntervalIndex",
"summary": "Immutable index of intervals that are closed on the same side.",
"name": _index_doc_kwargs["name"],
"versionadded": "0.20.0",
"extra_attributes": "is_overlapping\nvalues\n",
"extra_methods": "",
"examples": textwrap.dedent(
"""\
Examples
--------
A new ``IntervalIndex`` is typically constructed using
:func:`interval_range`:
>>> pd.interval_range(start=0, end=5)
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
dtype='interval[int64, right]')
It may also be constructed using one of the constructor
methods: :meth:`IntervalIndex.from_arrays`,
:meth:`IntervalIndex.from_breaks`, and :meth:`IntervalIndex.from_tuples`.
See further examples in the doc strings of ``interval_range`` and the
mentioned constructor methods.
"""
),
}
)
@inherit_names(["set_closed", "to_tuples"], IntervalArray, wrap=True)
@inherit_names(
[
"__array__",
"overlaps",
"contains",
"closed_left",
"closed_right",
"open_left",
"open_right",
"is_empty",
],
IntervalArray,
)
@inherit_names(["is_non_overlapping_monotonic", "closed"], IntervalArray, cache=True)
class IntervalIndex(ExtensionIndex):
_typ = "intervalindex"
# annotate properties pinned via inherit_names
closed: IntervalClosedType
is_non_overlapping_monotonic: bool
closed_left: bool
closed_right: bool
open_left: bool
open_right: bool
_data: IntervalArray
_values: IntervalArray
_can_hold_strings = False
_data_cls = IntervalArray
# --------------------------------------------------------------------
# Constructors
def __new__(
cls,
data,
closed=None,
dtype: Dtype | None = None,
copy: bool = False,
name: Hashable = None,
verify_integrity: bool = True,
) -> IntervalIndex:
name = maybe_extract_name(name, data, cls)
with rewrite_exception("IntervalArray", cls.__name__):
array = IntervalArray(
data,
closed=closed,
copy=copy,
dtype=dtype,
verify_integrity=verify_integrity,
)
return cls._simple_new(array, name)
@classmethod
@Appender(
_interval_shared_docs["from_breaks"]
% {
"klass": "IntervalIndex",
"name": textwrap.dedent(
"""
name : str, optional
Name of the resulting IntervalIndex."""
),
"examples": textwrap.dedent(
"""\
Examples
--------
>>> pd.IntervalIndex.from_breaks([0, 1, 2, 3])
IntervalIndex([(0, 1], (1, 2], (2, 3]],
dtype='interval[int64, right]')
"""
),
}
)
def from_breaks(
cls,
breaks,
closed: IntervalClosedType | None = "right",
name: Hashable = None,
copy: bool = False,
dtype: Dtype | None = None,
) -> IntervalIndex:
with rewrite_exception("IntervalArray", cls.__name__):
array = IntervalArray.from_breaks(
breaks, closed=closed, copy=copy, dtype=dtype
)
return cls._simple_new(array, name=name)
@classmethod
@Appender(
_interval_shared_docs["from_arrays"]
% {
"klass": "IntervalIndex",
"name": textwrap.dedent(
"""
name : str, optional
Name of the resulting IntervalIndex."""
),
"examples": textwrap.dedent(
"""\
Examples
--------
>>> pd.IntervalIndex.from_arrays([0, 1, 2], [1, 2, 3])
IntervalIndex([(0, 1], (1, 2], (2, 3]],
dtype='interval[int64, right]')
"""
),
}
)
def from_arrays(
cls,
left,
right,
closed: IntervalClosedType = "right",
name: Hashable = None,
copy: bool = False,
dtype: Dtype | None = None,
) -> IntervalIndex:
with rewrite_exception("IntervalArray", cls.__name__):
array = IntervalArray.from_arrays(
left, right, closed, copy=copy, dtype=dtype
)
return cls._simple_new(array, name=name)
@classmethod
@Appender(
_interval_shared_docs["from_tuples"]
% {
"klass": "IntervalIndex",
"name": textwrap.dedent(
"""
name : str, optional
Name of the resulting IntervalIndex."""
),
"examples": textwrap.dedent(
"""\
Examples
--------
>>> pd.IntervalIndex.from_tuples([(0, 1), (1, 2)])
IntervalIndex([(0, 1], (1, 2]],
dtype='interval[int64, right]')
"""
),
}
)
def from_tuples(
cls,
data,
closed: IntervalClosedType = "right",
name: Hashable = None,
copy: bool = False,
dtype: Dtype | None = None,
) -> IntervalIndex:
with rewrite_exception("IntervalArray", cls.__name__):
arr = IntervalArray.from_tuples(data, closed=closed, copy=copy, dtype=dtype)
return cls._simple_new(arr, name=name)
# --------------------------------------------------------------------
# error: Return type "IntervalTree" of "_engine" incompatible with return type
# "Union[IndexEngine, ExtensionEngine]" in supertype "Index"
@cache_readonly
def _engine(self) -> IntervalTree: # type: ignore[override]
# IntervalTree does not supports numpy array unless they are 64 bit
left = self._maybe_convert_i8(self.left)
left = maybe_upcast_numeric_to_64bit(left)
right = self._maybe_convert_i8(self.right)
right = maybe_upcast_numeric_to_64bit(right)
return IntervalTree(left, right, closed=self.closed)
def __contains__(self, key: Any) -> bool:
"""
return a boolean if this key is IN the index
We *only* accept an Interval
Parameters
----------
key : Interval
Returns
-------
bool
"""
hash(key)
if not isinstance(key, Interval):
if is_valid_na_for_dtype(key, self.dtype):
return self.hasnans
return False
try:
self.get_loc(key)
return True
except KeyError:
return False
@cache_readonly
def _multiindex(self) -> MultiIndex:
return MultiIndex.from_arrays([self.left, self.right], names=["left", "right"])
def __reduce__(self):
d = {
"left": self.left,
"right": self.right,
"closed": self.closed,
"name": self.name,
}
return _new_IntervalIndex, (type(self), d), None
@property
def inferred_type(self) -> str:
"""Return a string of the type inferred from the values"""
return "interval"
# Cannot determine type of "memory_usage"
@Appender(Index.memory_usage.__doc__) # type: ignore[has-type]
def memory_usage(self, deep: bool = False) -> int:
# we don't use an explicit engine
# so return the bytes here
return self.left.memory_usage(deep=deep) + self.right.memory_usage(deep=deep)
# IntervalTree doesn't have a is_monotonic_decreasing, so have to override
# the Index implementation
@cache_readonly
def is_monotonic_decreasing(self) -> bool:
"""
Return True if the IntervalIndex is monotonic decreasing (only equal or
decreasing values), else False
"""
return self[::-1].is_monotonic_increasing
@cache_readonly
def is_unique(self) -> bool:
"""
Return True if the IntervalIndex contains unique elements, else False.
"""
left = self.left
right = self.right
if self.isna().sum() > 1:
return False
if left.is_unique or right.is_unique:
return True
seen_pairs = set()
check_idx = np.where(left.duplicated(keep=False))[0]
for idx in check_idx:
pair = (left[idx], right[idx])
if pair in seen_pairs:
return False
seen_pairs.add(pair)
return True
@property
def is_overlapping(self) -> bool:
"""
Return True if the IntervalIndex has overlapping intervals, else False.
Two intervals overlap if they share a common point, including closed
endpoints. Intervals that only have an open endpoint in common do not
overlap.
Returns
-------
bool
Boolean indicating if the IntervalIndex has overlapping intervals.
See Also
--------
Interval.overlaps : Check whether two Interval objects overlap.
IntervalIndex.overlaps : Check an IntervalIndex elementwise for
overlaps.
Examples
--------
>>> index = pd.IntervalIndex.from_tuples([(0, 2), (1, 3), (4, 5)])
>>> index
IntervalIndex([(0, 2], (1, 3], (4, 5]],
dtype='interval[int64, right]')
>>> index.is_overlapping
True
Intervals that share closed endpoints overlap:
>>> index = pd.interval_range(0, 3, closed='both')
>>> index
IntervalIndex([[0, 1], [1, 2], [2, 3]],
dtype='interval[int64, both]')
>>> index.is_overlapping
True
Intervals that only have an open endpoint in common do not overlap:
>>> index = pd.interval_range(0, 3, closed='left')
>>> index
IntervalIndex([[0, 1), [1, 2), [2, 3)],
dtype='interval[int64, left]')
>>> index.is_overlapping
False
"""
# GH 23309
return self._engine.is_overlapping
def _needs_i8_conversion(self, key) -> bool:
"""
Check if a given key needs i8 conversion. Conversion is necessary for
Timestamp, Timedelta, DatetimeIndex, and TimedeltaIndex keys. An
Interval-like requires conversion if its endpoints are one of the
aforementioned types.
Assumes that any list-like data has already been cast to an Index.
Parameters
----------
key : scalar or Index-like
The key that should be checked for i8 conversion
Returns
-------
bool
"""
if is_interval_dtype(key) or isinstance(key, Interval):
return self._needs_i8_conversion(key.left)
i8_types = (Timestamp, Timedelta, DatetimeIndex, TimedeltaIndex)
return isinstance(key, i8_types)
def _maybe_convert_i8(self, key):
"""
Maybe convert a given key to its equivalent i8 value(s). Used as a
preprocessing step prior to IntervalTree queries (self._engine), which
expects numeric data.
Parameters
----------
key : scalar or list-like
The key that should maybe be converted to i8.
Returns
-------
scalar or list-like
The original key if no conversion occurred, int if converted scalar,
Index with an int64 dtype if converted list-like.
"""
if is_list_like(key):
key = ensure_index(key)
key = maybe_upcast_numeric_to_64bit(key)
if not self._needs_i8_conversion(key):
return key
scalar = is_scalar(key)
if is_interval_dtype(key) or isinstance(key, Interval):
# convert left/right and reconstruct
left = self._maybe_convert_i8(key.left)
right = self._maybe_convert_i8(key.right)
constructor = Interval if scalar else IntervalIndex.from_arrays
# error: "object" not callable
return constructor(
left, right, closed=self.closed
) # type: ignore[operator]
if scalar:
# Timestamp/Timedelta
key_dtype, key_i8 = infer_dtype_from_scalar(key, pandas_dtype=True)
if lib.is_period(key):
key_i8 = key.ordinal
elif isinstance(key_i8, Timestamp):
key_i8 = key_i8._value
elif isinstance(key_i8, (np.datetime64, np.timedelta64)):
key_i8 = key_i8.view("i8")
else:
# DatetimeIndex/TimedeltaIndex
key_dtype, key_i8 = key.dtype, Index(key.asi8)
if key.hasnans:
# convert NaT from its i8 value to np.nan so it's not viewed
# as a valid value, maybe causing errors (e.g. is_overlapping)
key_i8 = key_i8.where(~key._isnan)
# ensure consistency with IntervalIndex subtype
# error: Item "ExtensionDtype"/"dtype[Any]" of "Union[dtype[Any],
# ExtensionDtype]" has no attribute "subtype"
subtype = self.dtype.subtype # type: ignore[union-attr]
if not is_dtype_equal(subtype, key_dtype):
raise ValueError(
f"Cannot index an IntervalIndex of subtype {subtype} with "
f"values of dtype {key_dtype}"
)
return key_i8
def _searchsorted_monotonic(self, label, side: Literal["left", "right"] = "left"):
if not self.is_non_overlapping_monotonic:
raise KeyError(
"can only get slices from an IntervalIndex if bounds are "
"non-overlapping and all monotonic increasing or decreasing"
)
if isinstance(label, (IntervalMixin, IntervalIndex)):
raise NotImplementedError("Interval objects are not currently supported")
# GH 20921: "not is_monotonic_increasing" for the second condition
# instead of "is_monotonic_decreasing" to account for single element
# indexes being both increasing and decreasing
if (side == "left" and self.left.is_monotonic_increasing) or (
side == "right" and not self.left.is_monotonic_increasing
):
sub_idx = self.right
if self.open_right:
label = _get_next_label(label)
else:
sub_idx = self.left
if self.open_left:
label = _get_prev_label(label)
return sub_idx._searchsorted_monotonic(label, side)
# --------------------------------------------------------------------
# Indexing Methods
def get_loc(self, key) -> int | slice | np.ndarray:
"""
Get integer location, slice or boolean mask for requested label.
Parameters
----------
key : label
Returns
-------
int if unique index, slice if monotonic index, else mask
Examples
--------
>>> i1, i2 = pd.Interval(0, 1), pd.Interval(1, 2)
>>> index = pd.IntervalIndex([i1, i2])
>>> index.get_loc(1)
0
You can also supply a point inside an interval.
>>> index.get_loc(1.5)
1
If a label is in several intervals, you get the locations of all the
relevant intervals.
>>> i3 = pd.Interval(0, 2)
>>> overlapping_index = pd.IntervalIndex([i1, i2, i3])
>>> overlapping_index.get_loc(0.5)
array([ True, False, True])
Only exact matches will be returned if an interval is provided.
>>> index.get_loc(pd.Interval(0, 1))
0
"""
self._check_indexing_error(key)
if isinstance(key, Interval):
if self.closed != key.closed:
raise KeyError(key)
mask = (self.left == key.left) & (self.right == key.right)
elif is_valid_na_for_dtype(key, self.dtype):
mask = self.isna()
else:
# assume scalar
op_left = le if self.closed_left else lt
op_right = le if self.closed_right else lt
try:
mask = op_left(self.left, key) & op_right(key, self.right)
except TypeError as err:
# scalar is not comparable to II subtype --> invalid label
raise KeyError(key) from err
matches = mask.sum()
if matches == 0:
raise KeyError(key)
if matches == 1:
return mask.argmax()
res = lib.maybe_booleans_to_slice(mask.view("u1"))
if isinstance(res, slice) and res.stop is None:
# TODO: DO this in maybe_booleans_to_slice?
res = slice(res.start, len(self), res.step)
return res
def _get_indexer(
self,
target: Index,
method: str | None = None,
limit: int | None = None,
tolerance: Any | None = None,
) -> npt.NDArray[np.intp]:
if isinstance(target, IntervalIndex):
# We only get here with not self.is_overlapping
# -> at most one match per interval in target
# want exact matches -> need both left/right to match, so defer to
# left/right get_indexer, compare elementwise, equality -> match
indexer = self._get_indexer_unique_sides(target)
elif not is_object_dtype(target.dtype):
# homogeneous scalar index: use IntervalTree
# we should always have self._should_partial_index(target) here
target = self._maybe_convert_i8(target)
indexer = self._engine.get_indexer(target.values)
else:
# heterogeneous scalar index: defer elementwise to get_loc
# we should always have self._should_partial_index(target) here
return self._get_indexer_pointwise(target)[0]
return ensure_platform_int(indexer)
@Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs)
def get_indexer_non_unique(
self, target: Index
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]:
target = ensure_index(target)
if not self._should_compare(target) and not self._should_partial_index(target):
# e.g. IntervalIndex with different closed or incompatible subtype
# -> no matches
return self._get_indexer_non_comparable(target, None, unique=False)
elif isinstance(target, IntervalIndex):
if self.left.is_unique and self.right.is_unique:
# fastpath available even if we don't have self._index_as_unique
indexer = self._get_indexer_unique_sides(target)
missing = (indexer == -1).nonzero()[0]
else:
return self._get_indexer_pointwise(target)
elif is_object_dtype(target.dtype) or not self._should_partial_index(target):
# target might contain intervals: defer elementwise to get_loc
return self._get_indexer_pointwise(target)
else:
# Note: this case behaves differently from other Index subclasses
# because IntervalIndex does partial-int indexing
target = self._maybe_convert_i8(target)
indexer, missing = self._engine.get_indexer_non_unique(target.values)
return ensure_platform_int(indexer), ensure_platform_int(missing)
def _get_indexer_unique_sides(self, target: IntervalIndex) -> npt.NDArray[np.intp]:
"""
_get_indexer specialized to the case where both of our sides are unique.
"""
# Caller is responsible for checking
# `self.left.is_unique and self.right.is_unique`
left_indexer = self.left.get_indexer(target.left)
right_indexer = self.right.get_indexer(target.right)
indexer = np.where(left_indexer == right_indexer, left_indexer, -1)
return indexer
def _get_indexer_pointwise(
self, target: Index
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]:
"""
pointwise implementation for get_indexer and get_indexer_non_unique.
"""
indexer, missing = [], []
for i, key in enumerate(target):
try:
locs = self.get_loc(key)
if isinstance(locs, slice):
# Only needed for get_indexer_non_unique
locs = np.arange(locs.start, locs.stop, locs.step, dtype="intp")
elif lib.is_integer(locs):
locs = np.array(locs, ndmin=1)
else:
# otherwise we have ndarray[bool]
locs = np.where(locs)[0]
except KeyError:
missing.append(i)
locs = np.array([-1])
except InvalidIndexError:
# i.e. non-scalar key e.g. a tuple.
# see test_append_different_columns_types_raises
missing.append(i)
locs = np.array([-1])
indexer.append(locs)
indexer = np.concatenate(indexer)
return ensure_platform_int(indexer), ensure_platform_int(missing)
@cache_readonly
def _index_as_unique(self) -> bool:
return not self.is_overlapping and self._engine._na_count < 2
_requires_unique_msg = (
"cannot handle overlapping indices; use IntervalIndex.get_indexer_non_unique"
)
def _convert_slice_indexer(self, key: slice, kind: str):
if not (key.step is None or key.step == 1):
# GH#31658 if label-based, we require step == 1,
# if positional, we disallow float start/stop
msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
if kind == "loc":
raise ValueError(msg)
if kind == "getitem":
if not is_valid_positional_slice(key):
# i.e. this cannot be interpreted as a positional slice
raise ValueError(msg)
return super()._convert_slice_indexer(key, kind)
@cache_readonly
def _should_fallback_to_positional(self) -> bool:
# integer lookups in Series.__getitem__ are unambiguously
# positional in this case
# error: Item "ExtensionDtype"/"dtype[Any]" of "Union[dtype[Any],
# ExtensionDtype]" has no attribute "subtype"
return self.dtype.subtype.kind in ["m", "M"] # type: ignore[union-attr]
def _maybe_cast_slice_bound(self, label, side: str):
return getattr(self, side)._maybe_cast_slice_bound(label, side)
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
if not isinstance(dtype, IntervalDtype):
return False
common_subtype = find_common_type([self.dtype, dtype])
return not is_object_dtype(common_subtype)
# --------------------------------------------------------------------
@cache_readonly
def left(self) -> Index:
return Index(self._data.left, copy=False)
@cache_readonly
def right(self) -> Index:
return Index(self._data.right, copy=False)
@cache_readonly
def mid(self) -> Index:
return Index(self._data.mid, copy=False)
@property
def length(self) -> Index:
return Index(self._data.length, copy=False)
# --------------------------------------------------------------------
# Rendering Methods
# __repr__ associated methods are based on MultiIndex
def _format_with_header(self, header: list[str], na_rep: str) -> list[str]:
# matches base class except for whitespace padding
return header + list(self._format_native_types(na_rep=na_rep))
def _format_native_types(
self, *, na_rep: str = "NaN", quoting=None, **kwargs
) -> npt.NDArray[np.object_]:
# GH 28210: use base method but with different default na_rep
return super()._format_native_types(na_rep=na_rep, quoting=quoting, **kwargs)
def _format_data(self, name=None) -> str:
# TODO: integrate with categorical and make generic
# name argument is unused here; just for compat with base / categorical
return f"{self._data._format_data()},{self._format_space()}"
# --------------------------------------------------------------------
# Set Operations
def _intersection(self, other, sort):
"""
intersection specialized to the case with matching dtypes.
"""
# For IntervalIndex we also know other.closed == self.closed
if self.left.is_unique and self.right.is_unique:
taken = self._intersection_unique(other)
elif other.left.is_unique and other.right.is_unique and self.isna().sum() <= 1:
# Swap other/self if other is unique and self does not have
# multiple NaNs
taken = other._intersection_unique(self)
else:
# duplicates
taken = self._intersection_non_unique(other)
if sort is None:
taken = taken.sort_values()
return taken
def _intersection_unique(self, other: IntervalIndex) -> IntervalIndex:
"""
Used when the IntervalIndex does not have any common endpoint,
no matter left or right.
Return the intersection with another IntervalIndex.
Parameters
----------
other : IntervalIndex
Returns
-------
IntervalIndex
"""
# Note: this is much more performant than super()._intersection(other)
lindexer = self.left.get_indexer(other.left)
rindexer = self.right.get_indexer(other.right)
match = (lindexer == rindexer) & (lindexer != -1)
indexer = lindexer.take(match.nonzero()[0])
indexer = unique(indexer)
return self.take(indexer)
def _intersection_non_unique(self, other: IntervalIndex) -> IntervalIndex:
"""
Used when the IntervalIndex does have some common endpoints,
on either sides.
Return the intersection with another IntervalIndex.
Parameters
----------
other : IntervalIndex
Returns
-------
IntervalIndex
"""
# Note: this is about 3.25x faster than super()._intersection(other)
# in IntervalIndexMethod.time_intersection_both_duplicate(1000)
mask = np.zeros(len(self), dtype=bool)
if self.hasnans and other.hasnans:
first_nan_loc = np.arange(len(self))[self.isna()][0]
mask[first_nan_loc] = True
other_tups = set(zip(other.left, other.right))
for i, tup in enumerate(zip(self.left, self.right)):
if tup in other_tups:
mask[i] = True
return self[mask]
# --------------------------------------------------------------------
def _get_engine_target(self) -> np.ndarray:
# Note: we _could_ use libjoin functions by either casting to object
# dtype or constructing tuples (faster than constructing Intervals)
# but the libjoin fastpaths are no longer fast in these cases.
raise NotImplementedError(
"IntervalIndex does not use libjoin fastpaths or pass values to "
"IndexEngine objects"
)
def _from_join_target(self, result):
raise NotImplementedError("IntervalIndex does not use libjoin fastpaths")
# TODO: arithmetic operations
def _is_valid_endpoint(endpoint) -> bool:
"""
Helper for interval_range to check if start/end are valid types.
"""
return any(
[
is_number(endpoint),
isinstance(endpoint, Timestamp),
isinstance(endpoint, Timedelta),
endpoint is None,
]
)
def _is_type_compatible(a, b) -> bool:
"""
Helper for interval_range to check type compat of start/end/freq.
"""
is_ts_compat = lambda x: isinstance(x, (Timestamp, BaseOffset))
is_td_compat = lambda x: isinstance(x, (Timedelta, BaseOffset))
return (
(is_number(a) and is_number(b))
or (is_ts_compat(a) and is_ts_compat(b))
or (is_td_compat(a) and is_td_compat(b))
or com.any_none(a, b)
)
def interval_range(
start=None,
end=None,
periods=None,
freq=None,
name: Hashable = None,
closed: IntervalClosedType = "right",
) -> IntervalIndex:
"""
Return a fixed frequency IntervalIndex.
Parameters
----------
start : numeric or datetime-like, default None
Left bound for generating intervals.
end : numeric or datetime-like, default None
Right bound for generating intervals.
periods : int, default None
Number of periods to generate.
freq : numeric, str, datetime.timedelta, or DateOffset, default None
The length of each interval. Must be consistent with the type of start
and end, e.g. 2 for numeric, or '5H' for datetime-like. Default is 1
for numeric and 'D' for datetime-like.
name : str, default None
Name of the resulting IntervalIndex.
closed : {'left', 'right', 'both', 'neither'}, default 'right'
Whether the intervals are closed on the left-side, right-side, both
or neither.
Returns
-------
IntervalIndex
See Also
--------
IntervalIndex : An Index of intervals that are all closed on the same side.
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``IntervalIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end``, inclusively.
To learn more about datetime-like frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
Numeric ``start`` and ``end`` is supported.
>>> pd.interval_range(start=0, end=5)
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
dtype='interval[int64, right]')
Additionally, datetime-like input is also supported.
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
... end=pd.Timestamp('2017-01-04'))
IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
(2017-01-03, 2017-01-04]],
dtype='interval[datetime64[ns], right]')
The ``freq`` parameter specifies the frequency between the left and right.
endpoints of the individual intervals within the ``IntervalIndex``. For
numeric ``start`` and ``end``, the frequency must also be numeric.
>>> pd.interval_range(start=0, periods=4, freq=1.5)
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
dtype='interval[float64, right]')
Similarly, for datetime-like ``start`` and ``end``, the frequency must be
convertible to a DateOffset.
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
... periods=3, freq='MS')
IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
(2017-03-01, 2017-04-01]],
dtype='interval[datetime64[ns], right]')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.interval_range(start=0, end=6, periods=4)
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
dtype='interval[float64, right]')
The ``closed`` parameter specifies which endpoints of the individual
intervals within the ``IntervalIndex`` are closed.
>>> pd.interval_range(end=5, periods=4, closed='both')
IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
dtype='interval[int64, both]')
"""
start = maybe_box_datetimelike(start)
end = maybe_box_datetimelike(end)
endpoint = start if start is not None else end
if freq is None and com.any_none(periods, start, end):
freq = 1 if is_number(endpoint) else "D"
if com.count_not_none(start, end, periods, freq) != 3:
raise ValueError(
"Of the four parameters: start, end, periods, and "
"freq, exactly three must be specified"
)
if not _is_valid_endpoint(start):
raise ValueError(f"start must be numeric or datetime-like, got {start}")
if not _is_valid_endpoint(end):
raise ValueError(f"end must be numeric or datetime-like, got {end}")
if is_float(periods):
periods = int(periods)
elif not is_integer(periods) and periods is not None:
raise TypeError(f"periods must be a number, got {periods}")
if freq is not None and not is_number(freq):
try:
freq = to_offset(freq)
except ValueError as err:
raise ValueError(
f"freq must be numeric or convertible to DateOffset, got {freq}"
) from err
# verify type compatibility
if not all(
[
_is_type_compatible(start, end),
_is_type_compatible(start, freq),
_is_type_compatible(end, freq),
]
):
raise TypeError("start, end, freq need to be type compatible")
# +1 to convert interval count to breaks count (n breaks = n-1 intervals)
if periods is not None:
periods += 1
breaks: np.ndarray | TimedeltaIndex | DatetimeIndex
if is_number(endpoint):
# force consistency between start/end/freq (lower end if freq skips it)
if com.all_not_none(start, end, freq):
end -= (end - start) % freq
# compute the period/start/end if unspecified (at most one)
if periods is None:
periods = int((end - start) // freq) + 1
elif start is None:
start = end - (periods - 1) * freq
elif end is None:
end = start + (periods - 1) * freq
breaks = np.linspace(start, end, periods)
if all(is_integer(x) for x in com.not_none(start, end, freq)):
# np.linspace always produces float output
# error: Argument 1 to "maybe_downcast_numeric" has incompatible type
# "Union[ndarray[Any, Any], TimedeltaIndex, DatetimeIndex]";
# expected "ndarray[Any, Any]" [
breaks = maybe_downcast_numeric(
breaks, # type: ignore[arg-type]
np.dtype("int64"),
)
else:
# delegate to the appropriate range function
if isinstance(endpoint, Timestamp):
breaks = date_range(start=start, end=end, periods=periods, freq=freq)
else:
breaks = timedelta_range(start=start, end=end, periods=periods, freq=freq)
return IntervalIndex.from_breaks(breaks, name=name, closed=closed)