Inzynierka/Lib/site-packages/pandas/core/sample.py
2023-06-02 12:51:02 +02:00

154 lines
4.5 KiB
Python

"""
Module containing utilities for NDFrame.sample() and .GroupBy.sample()
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas._libs import lib
from pandas._typing import AxisInt
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCSeries,
)
if TYPE_CHECKING:
from pandas.core.generic import NDFrame
def preprocess_weights(obj: NDFrame, weights, axis: AxisInt) -> np.ndarray:
"""
Process and validate the `weights` argument to `NDFrame.sample` and
`.GroupBy.sample`.
Returns `weights` as an ndarray[np.float64], validated except for normalizing
weights (because that must be done groupwise in groupby sampling).
"""
# If a series, align with frame
if isinstance(weights, ABCSeries):
weights = weights.reindex(obj.axes[axis])
# Strings acceptable if a dataframe and axis = 0
if isinstance(weights, str):
if isinstance(obj, ABCDataFrame):
if axis == 0:
try:
weights = obj[weights]
except KeyError as err:
raise KeyError(
"String passed to weights not a valid column"
) from err
else:
raise ValueError(
"Strings can only be passed to "
"weights when sampling from rows on "
"a DataFrame"
)
else:
raise ValueError(
"Strings cannot be passed as weights when sampling from a Series."
)
if isinstance(obj, ABCSeries):
func = obj._constructor
else:
func = obj._constructor_sliced
weights = func(weights, dtype="float64")._values
if len(weights) != obj.shape[axis]:
raise ValueError("Weights and axis to be sampled must be of same length")
if lib.has_infs(weights):
raise ValueError("weight vector may not include `inf` values")
if (weights < 0).any():
raise ValueError("weight vector many not include negative values")
missing = np.isnan(weights)
if missing.any():
# Don't modify weights in place
weights = weights.copy()
weights[missing] = 0
return weights
def process_sampling_size(
n: int | None, frac: float | None, replace: bool
) -> int | None:
"""
Process and validate the `n` and `frac` arguments to `NDFrame.sample` and
`.GroupBy.sample`.
Returns None if `frac` should be used (variable sampling sizes), otherwise returns
the constant sampling size.
"""
# If no frac or n, default to n=1.
if n is None and frac is None:
n = 1
elif n is not None and frac is not None:
raise ValueError("Please enter a value for `frac` OR `n`, not both")
elif n is not None:
if n < 0:
raise ValueError(
"A negative number of rows requested. Please provide `n` >= 0."
)
if n % 1 != 0:
raise ValueError("Only integers accepted as `n` values")
else:
assert frac is not None # for mypy
if frac > 1 and not replace:
raise ValueError(
"Replace has to be set to `True` when "
"upsampling the population `frac` > 1."
)
if frac < 0:
raise ValueError(
"A negative number of rows requested. Please provide `frac` >= 0."
)
return n
def sample(
obj_len: int,
size: int,
replace: bool,
weights: np.ndarray | None,
random_state: np.random.RandomState | np.random.Generator,
) -> np.ndarray:
"""
Randomly sample `size` indices in `np.arange(obj_len)`
Parameters
----------
obj_len : int
The length of the indices being considered
size : int
The number of values to choose
replace : bool
Allow or disallow sampling of the same row more than once.
weights : np.ndarray[np.float64] or None
If None, equal probability weighting, otherwise weights according
to the vector normalized
random_state: np.random.RandomState or np.random.Generator
State used for the random sampling
Returns
-------
np.ndarray[np.intp]
"""
if weights is not None:
weight_sum = weights.sum()
if weight_sum != 0:
weights = weights / weight_sum
else:
raise ValueError("Invalid weights: weights sum to zero")
return random_state.choice(obj_len, size=size, replace=replace, p=weights).astype(
np.intp, copy=False
)