Inzynierka/Lib/site-packages/pandas/tests/arrays/categorical/test_analytics.py
2023-06-02 12:51:02 +02:00

336 lines
12 KiB
Python

import re
import sys
import numpy as np
import pytest
from pandas.compat import PYPY
from pandas import (
Categorical,
CategoricalDtype,
Index,
NaT,
Series,
date_range,
)
import pandas._testing as tm
from pandas.api.types import is_scalar
class TestCategoricalAnalytics:
@pytest.mark.parametrize("aggregation", ["min", "max"])
def test_min_max_not_ordered_raises(self, aggregation):
# unordered cats have no min/max
cat = Categorical(["a", "b", "c", "d"], ordered=False)
msg = f"Categorical is not ordered for operation {aggregation}"
agg_func = getattr(cat, aggregation)
with pytest.raises(TypeError, match=msg):
agg_func()
ufunc = np.minimum if aggregation == "min" else np.maximum
with pytest.raises(TypeError, match=msg):
ufunc.reduce(cat)
def test_min_max_ordered(self, index_or_series_or_array):
cat = Categorical(["a", "b", "c", "d"], ordered=True)
obj = index_or_series_or_array(cat)
_min = obj.min()
_max = obj.max()
assert _min == "a"
assert _max == "d"
assert np.minimum.reduce(obj) == "a"
assert np.maximum.reduce(obj) == "d"
# TODO: raises if we pass axis=0 (on Index and Categorical, not Series)
cat = Categorical(
["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True
)
obj = index_or_series_or_array(cat)
_min = obj.min()
_max = obj.max()
assert _min == "d"
assert _max == "a"
assert np.minimum.reduce(obj) == "d"
assert np.maximum.reduce(obj) == "a"
@pytest.mark.parametrize(
"categories,expected",
[
(list("ABC"), np.NaN),
([1, 2, 3], np.NaN),
pytest.param(
Series(date_range("2020-01-01", periods=3), dtype="category"),
NaT,
marks=pytest.mark.xfail(
reason="https://github.com/pandas-dev/pandas/issues/29962"
),
),
],
)
@pytest.mark.parametrize("aggregation", ["min", "max"])
def test_min_max_ordered_empty(self, categories, expected, aggregation):
# GH 30227
cat = Categorical([], categories=categories, ordered=True)
agg_func = getattr(cat, aggregation)
result = agg_func()
assert result is expected
@pytest.mark.parametrize(
"values, categories",
[(["a", "b", "c", np.nan], list("cba")), ([1, 2, 3, np.nan], [3, 2, 1])],
)
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("function", ["min", "max"])
def test_min_max_with_nan(self, values, categories, function, skipna):
# GH 25303
cat = Categorical(values, categories=categories, ordered=True)
result = getattr(cat, function)(skipna=skipna)
if skipna is False:
assert result is np.nan
else:
expected = categories[0] if function == "min" else categories[2]
assert result == expected
@pytest.mark.parametrize("function", ["min", "max"])
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max_only_nan(self, function, skipna):
# https://github.com/pandas-dev/pandas/issues/33450
cat = Categorical([np.nan], categories=[1, 2], ordered=True)
result = getattr(cat, function)(skipna=skipna)
assert result is np.nan
@pytest.mark.parametrize("method", ["min", "max"])
def test_numeric_only_min_max_raises(self, method):
# GH 25303
cat = Categorical(
[np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
)
with pytest.raises(TypeError, match=".* got an unexpected keyword"):
getattr(cat, method)(numeric_only=True)
@pytest.mark.parametrize("method", ["min", "max"])
def test_numpy_min_max_raises(self, method):
cat = Categorical(["a", "b", "c", "b"], ordered=False)
msg = (
f"Categorical is not ordered for operation {method}\n"
"you can use .as_ordered() to change the Categorical to an ordered one"
)
method = getattr(np, method)
with pytest.raises(TypeError, match=re.escape(msg)):
method(cat)
@pytest.mark.parametrize("kwarg", ["axis", "out", "keepdims"])
@pytest.mark.parametrize("method", ["min", "max"])
def test_numpy_min_max_unsupported_kwargs_raises(self, method, kwarg):
cat = Categorical(["a", "b", "c", "b"], ordered=True)
msg = (
f"the '{kwarg}' parameter is not supported in the pandas implementation "
f"of {method}"
)
if kwarg == "axis":
msg = r"`axis` must be fewer than the number of dimensions \(1\)"
kwargs = {kwarg: 42}
method = getattr(np, method)
with pytest.raises(ValueError, match=msg):
method(cat, **kwargs)
@pytest.mark.parametrize("method, expected", [("min", "a"), ("max", "c")])
def test_numpy_min_max_axis_equals_none(self, method, expected):
cat = Categorical(["a", "b", "c", "b"], ordered=True)
method = getattr(np, method)
result = method(cat, axis=None)
assert result == expected
@pytest.mark.parametrize(
"values,categories,exp_mode",
[
([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
],
)
def test_mode(self, values, categories, exp_mode):
cat = Categorical(values, categories=categories, ordered=True)
res = Series(cat).mode()._values
exp = Categorical(exp_mode, categories=categories, ordered=True)
tm.assert_categorical_equal(res, exp)
def test_searchsorted(self, ordered):
# https://github.com/pandas-dev/pandas/issues/8420
# https://github.com/pandas-dev/pandas/issues/14522
cat = Categorical(
["cheese", "milk", "apple", "bread", "bread"],
categories=["cheese", "milk", "apple", "bread"],
ordered=ordered,
)
ser = Series(cat)
# Searching for single item argument, side='left' (default)
res_cat = cat.searchsorted("apple")
assert res_cat == 2
assert is_scalar(res_cat)
res_ser = ser.searchsorted("apple")
assert res_ser == 2
assert is_scalar(res_ser)
# Searching for single item array, side='left' (default)
res_cat = cat.searchsorted(["bread"])
res_ser = ser.searchsorted(["bread"])
exp = np.array([3], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)
# Searching for several items array, side='right'
res_cat = cat.searchsorted(["apple", "bread"], side="right")
res_ser = ser.searchsorted(["apple", "bread"], side="right")
exp = np.array([3, 5], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)
# Searching for a single value that is not from the Categorical
with pytest.raises(TypeError, match="cucumber"):
cat.searchsorted("cucumber")
with pytest.raises(TypeError, match="cucumber"):
ser.searchsorted("cucumber")
# Searching for multiple values one of each is not from the Categorical
msg = (
"Cannot setitem on a Categorical with a new category, "
"set the categories first"
)
with pytest.raises(TypeError, match=msg):
cat.searchsorted(["bread", "cucumber"])
with pytest.raises(TypeError, match=msg):
ser.searchsorted(["bread", "cucumber"])
def test_unique(self, ordered):
# GH38140
dtype = CategoricalDtype(["a", "b", "c"], ordered=ordered)
# categories are reordered based on value when ordered=False
cat = Categorical(["a", "b", "c"], dtype=dtype)
res = cat.unique()
tm.assert_categorical_equal(res, cat)
cat = Categorical(["a", "b", "a", "a"], dtype=dtype)
res = cat.unique()
tm.assert_categorical_equal(res, Categorical(["a", "b"], dtype=dtype))
cat = Categorical(["c", "a", "b", "a", "a"], dtype=dtype)
res = cat.unique()
exp_cat = Categorical(["c", "a", "b"], dtype=dtype)
tm.assert_categorical_equal(res, exp_cat)
# nan must be removed
cat = Categorical(["b", np.nan, "b", np.nan, "a"], dtype=dtype)
res = cat.unique()
exp_cat = Categorical(["b", np.nan, "a"], dtype=dtype)
tm.assert_categorical_equal(res, exp_cat)
def test_unique_index_series(self, ordered):
# GH38140
dtype = CategoricalDtype([3, 2, 1], ordered=ordered)
c = Categorical([3, 1, 2, 2, 1], dtype=dtype)
# Categorical.unique sorts categories by appearance order
# if ordered=False
exp = Categorical([3, 1, 2], dtype=dtype)
tm.assert_categorical_equal(c.unique(), exp)
tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)
c = Categorical([1, 1, 2, 2], dtype=dtype)
exp = Categorical([1, 2], dtype=dtype)
tm.assert_categorical_equal(c.unique(), exp)
tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)
def test_shift(self):
# GH 9416
cat = Categorical(["a", "b", "c", "d", "a"])
# shift forward
sp1 = cat.shift(1)
xp1 = Categorical([np.nan, "a", "b", "c", "d"])
tm.assert_categorical_equal(sp1, xp1)
tm.assert_categorical_equal(cat[:-1], sp1[1:])
# shift back
sn2 = cat.shift(-2)
xp2 = Categorical(
["c", "d", "a", np.nan, np.nan], categories=["a", "b", "c", "d"]
)
tm.assert_categorical_equal(sn2, xp2)
tm.assert_categorical_equal(cat[2:], sn2[:-2])
# shift by zero
tm.assert_categorical_equal(cat, cat.shift(0))
def test_nbytes(self):
cat = Categorical([1, 2, 3])
exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories
assert cat.nbytes == exp
def test_memory_usage(self):
cat = Categorical([1, 2, 3])
# .categories is an index, so we include the hashtable
assert 0 < cat.nbytes <= cat.memory_usage()
assert 0 < cat.nbytes <= cat.memory_usage(deep=True)
cat = Categorical(["foo", "foo", "bar"])
assert cat.memory_usage(deep=True) > cat.nbytes
if not PYPY:
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
assert abs(diff) < 100
def test_map(self):
c = Categorical(list("ABABC"), categories=list("CBA"), ordered=True)
result = c.map(lambda x: x.lower())
exp = Categorical(list("ababc"), categories=list("cba"), ordered=True)
tm.assert_categorical_equal(result, exp)
c = Categorical(list("ABABC"), categories=list("ABC"), ordered=False)
result = c.map(lambda x: x.lower())
exp = Categorical(list("ababc"), categories=list("abc"), ordered=False)
tm.assert_categorical_equal(result, exp)
result = c.map(lambda x: 1)
# GH 12766: Return an index not an array
tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
def test_validate_inplace_raises(self, value):
cat = Categorical(["A", "B", "B", "C", "A"])
msg = (
'For argument "inplace" expected type bool, '
f"received type {type(value).__name__}"
)
with pytest.raises(ValueError, match=msg):
cat.sort_values(inplace=value)
def test_quantile_empty(self):
# make sure we have correct itemsize on resulting codes
cat = Categorical(["A", "B"])
idx = Index([0.0, 0.5])
result = cat[:0]._quantile(idx, interpolation="linear")
assert result._codes.dtype == np.int8
expected = cat.take([-1, -1], allow_fill=True)
tm.assert_extension_array_equal(result, expected)