Inzynierka/Lib/site-packages/pandas/tests/arrays/categorical/test_indexing.py
2023-06-02 12:51:02 +02:00

383 lines
12 KiB
Python

import math
import numpy as np
import pytest
from pandas import (
NA,
Categorical,
CategoricalIndex,
Index,
Interval,
IntervalIndex,
NaT,
PeriodIndex,
Series,
Timedelta,
Timestamp,
)
import pandas._testing as tm
import pandas.core.common as com
class TestCategoricalIndexingWithFactor:
def test_getitem(self, factor):
assert factor[0] == "a"
assert factor[-1] == "c"
subf = factor[[0, 1, 2]]
tm.assert_numpy_array_equal(subf._codes, np.array([0, 1, 1], dtype=np.int8))
subf = factor[np.asarray(factor) == "c"]
tm.assert_numpy_array_equal(subf._codes, np.array([2, 2, 2], dtype=np.int8))
def test_setitem(self, factor):
# int/positional
c = factor.copy()
c[0] = "b"
assert c[0] == "b"
c[-1] = "a"
assert c[-1] == "a"
# boolean
c = factor.copy()
indexer = np.zeros(len(c), dtype="bool")
indexer[0] = True
indexer[-1] = True
c[indexer] = "c"
expected = Categorical(["c", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
tm.assert_categorical_equal(c, expected)
@pytest.mark.parametrize(
"other",
[Categorical(["b", "a"]), Categorical(["b", "a"], categories=["b", "a"])],
)
def test_setitem_same_but_unordered(self, other):
# GH-24142
target = Categorical(["a", "b"], categories=["a", "b"])
mask = np.array([True, False])
target[mask] = other[mask]
expected = Categorical(["b", "b"], categories=["a", "b"])
tm.assert_categorical_equal(target, expected)
@pytest.mark.parametrize(
"other",
[
Categorical(["b", "a"], categories=["b", "a", "c"]),
Categorical(["b", "a"], categories=["a", "b", "c"]),
Categorical(["a", "a"], categories=["a"]),
Categorical(["b", "b"], categories=["b"]),
],
)
def test_setitem_different_unordered_raises(self, other):
# GH-24142
target = Categorical(["a", "b"], categories=["a", "b"])
mask = np.array([True, False])
msg = "Cannot set a Categorical with another, without identical categories"
with pytest.raises(TypeError, match=msg):
target[mask] = other[mask]
@pytest.mark.parametrize(
"other",
[
Categorical(["b", "a"]),
Categorical(["b", "a"], categories=["b", "a"], ordered=True),
Categorical(["b", "a"], categories=["a", "b", "c"], ordered=True),
],
)
def test_setitem_same_ordered_raises(self, other):
# Gh-24142
target = Categorical(["a", "b"], categories=["a", "b"], ordered=True)
mask = np.array([True, False])
msg = "Cannot set a Categorical with another, without identical categories"
with pytest.raises(TypeError, match=msg):
target[mask] = other[mask]
def test_setitem_tuple(self):
# GH#20439
cat = Categorical([(0, 1), (0, 2), (0, 1)])
# This should not raise
cat[1] = cat[0]
assert cat[1] == (0, 1)
def test_setitem_listlike(self):
# GH#9469
# properly coerce the input indexers
np.random.seed(1)
cat = Categorical(
np.random.randint(0, 5, size=150000).astype(np.int8)
).add_categories([-1000])
indexer = np.array([100000]).astype(np.int64)
cat[indexer] = -1000
# we are asserting the code result here
# which maps to the -1000 category
result = cat.codes[np.array([100000]).astype(np.int64)]
tm.assert_numpy_array_equal(result, np.array([5], dtype="int8"))
class TestCategoricalIndexing:
def test_getitem_slice(self):
cat = Categorical(["a", "b", "c", "d", "a", "b", "c"])
sliced = cat[3]
assert sliced == "d"
sliced = cat[3:5]
expected = Categorical(["d", "a"], categories=["a", "b", "c", "d"])
tm.assert_categorical_equal(sliced, expected)
def test_getitem_listlike(self):
# GH 9469
# properly coerce the input indexers
np.random.seed(1)
c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8))
result = c.codes[np.array([100000]).astype(np.int64)]
expected = c[np.array([100000]).astype(np.int64)].codes
tm.assert_numpy_array_equal(result, expected)
def test_periodindex(self):
idx1 = PeriodIndex(
["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"], freq="M"
)
cat1 = Categorical(idx1)
str(cat1)
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.int8)
exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
tm.assert_numpy_array_equal(cat1._codes, exp_arr)
tm.assert_index_equal(cat1.categories, exp_idx)
idx2 = PeriodIndex(
["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"], freq="M"
)
cat2 = Categorical(idx2, ordered=True)
str(cat2)
exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.int8)
exp_idx2 = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
tm.assert_numpy_array_equal(cat2._codes, exp_arr)
tm.assert_index_equal(cat2.categories, exp_idx2)
idx3 = PeriodIndex(
[
"2013-12",
"2013-11",
"2013-10",
"2013-09",
"2013-08",
"2013-07",
"2013-05",
],
freq="M",
)
cat3 = Categorical(idx3, ordered=True)
exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype=np.int8)
exp_idx = PeriodIndex(
[
"2013-05",
"2013-07",
"2013-08",
"2013-09",
"2013-10",
"2013-11",
"2013-12",
],
freq="M",
)
tm.assert_numpy_array_equal(cat3._codes, exp_arr)
tm.assert_index_equal(cat3.categories, exp_idx)
@pytest.mark.parametrize(
"null_val",
[None, np.nan, NaT, NA, math.nan, "NaT", "nat", "NAT", "nan", "NaN", "NAN"],
)
def test_periodindex_on_null_types(self, null_val):
# GH 46673
result = PeriodIndex(["2022-04-06", "2022-04-07", null_val], freq="D")
expected = PeriodIndex(["2022-04-06", "2022-04-07", "NaT"], dtype="period[D]")
assert result[2] is NaT
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]])
def test_categories_assignments_wrong_length_raises(self, new_categories):
cat = Categorical(["a", "b", "c", "a"])
msg = (
"new categories need to have the same number of items "
"as the old categories!"
)
with pytest.raises(ValueError, match=msg):
cat.rename_categories(new_categories)
# Combinations of sorted/unique:
@pytest.mark.parametrize(
"idx_values", [[1, 2, 3, 4], [1, 3, 2, 4], [1, 3, 3, 4], [1, 2, 2, 4]]
)
# Combinations of missing/unique
@pytest.mark.parametrize("key_values", [[1, 2], [1, 5], [1, 1], [5, 5]])
@pytest.mark.parametrize("key_class", [Categorical, CategoricalIndex])
@pytest.mark.parametrize("dtype", [None, "category", "key"])
def test_get_indexer_non_unique(self, idx_values, key_values, key_class, dtype):
# GH 21448
key = key_class(key_values, categories=range(1, 5))
if dtype == "key":
dtype = key.dtype
# Test for flat index and CategoricalIndex with same/different cats:
idx = Index(idx_values, dtype=dtype)
expected, exp_miss = idx.get_indexer_non_unique(key_values)
result, res_miss = idx.get_indexer_non_unique(key)
tm.assert_numpy_array_equal(expected, result)
tm.assert_numpy_array_equal(exp_miss, res_miss)
exp_unique = idx.unique().get_indexer(key_values)
res_unique = idx.unique().get_indexer(key)
tm.assert_numpy_array_equal(res_unique, exp_unique)
def test_where_unobserved_nan(self):
ser = Series(Categorical(["a", "b"]))
result = ser.where([True, False])
expected = Series(Categorical(["a", None], categories=["a", "b"]))
tm.assert_series_equal(result, expected)
# all NA
ser = Series(Categorical(["a", "b"]))
result = ser.where([False, False])
expected = Series(Categorical([None, None], categories=["a", "b"]))
tm.assert_series_equal(result, expected)
def test_where_unobserved_categories(self):
ser = Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
result = ser.where([True, True, False], other="b")
expected = Series(Categorical(["a", "b", "b"], categories=ser.cat.categories))
tm.assert_series_equal(result, expected)
def test_where_other_categorical(self):
ser = Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
other = Categorical(["b", "c", "a"], categories=["a", "c", "b", "d"])
result = ser.where([True, False, True], other)
expected = Series(Categorical(["a", "c", "c"], dtype=ser.dtype))
tm.assert_series_equal(result, expected)
def test_where_new_category_raises(self):
ser = Series(Categorical(["a", "b", "c"]))
msg = "Cannot setitem on a Categorical with a new category"
with pytest.raises(TypeError, match=msg):
ser.where([True, False, True], "d")
def test_where_ordered_differs_rasies(self):
ser = Series(
Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"], ordered=True)
)
other = Categorical(
["b", "c", "a"], categories=["a", "c", "b", "d"], ordered=True
)
with pytest.raises(TypeError, match="without identical categories"):
ser.where([True, False, True], other)
class TestContains:
def test_contains(self):
# GH#21508
cat = Categorical(list("aabbca"), categories=list("cab"))
assert "b" in cat
assert "z" not in cat
assert np.nan not in cat
with pytest.raises(TypeError, match="unhashable type: 'list'"):
assert [1] in cat
# assert codes NOT in index
assert 0 not in cat
assert 1 not in cat
cat = Categorical(list("aabbca") + [np.nan], categories=list("cab"))
assert np.nan in cat
@pytest.mark.parametrize(
"item, expected",
[
(Interval(0, 1), True),
(1.5, True),
(Interval(0.5, 1.5), False),
("a", False),
(Timestamp(1), False),
(Timedelta(1), False),
],
ids=str,
)
def test_contains_interval(self, item, expected):
# GH#23705
cat = Categorical(IntervalIndex.from_breaks(range(3)))
result = item in cat
assert result is expected
def test_contains_list(self):
# GH#21729
cat = Categorical([1, 2, 3])
assert "a" not in cat
with pytest.raises(TypeError, match="unhashable type"):
["a"] in cat
with pytest.raises(TypeError, match="unhashable type"):
["a", "b"] in cat
@pytest.mark.parametrize("index", [True, False])
def test_mask_with_boolean(index):
ser = Series(range(3))
idx = Categorical([True, False, True])
if index:
idx = CategoricalIndex(idx)
assert com.is_bool_indexer(idx)
result = ser[idx]
expected = ser[idx.astype("object")]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("index", [True, False])
def test_mask_with_boolean_na_treated_as_false(index):
# https://github.com/pandas-dev/pandas/issues/31503
ser = Series(range(3))
idx = Categorical([True, False, None])
if index:
idx = CategoricalIndex(idx)
result = ser[idx]
expected = ser[idx.fillna(False)]
tm.assert_series_equal(result, expected)
@pytest.fixture
def non_coercible_categorical(monkeypatch):
"""
Monkeypatch Categorical.__array__ to ensure no implicit conversion.
Raises
------
ValueError
When Categorical.__array__ is called.
"""
# TODO(Categorical): identify other places where this may be
# useful and move to a conftest.py
def array(self, dtype=None):
raise ValueError("I cannot be converted.")
with monkeypatch.context() as m:
m.setattr(Categorical, "__array__", array)
yield
def test_series_at():
arr = Categorical(["a", "b", "c"])
ser = Series(arr)
result = ser.at[0]
assert result == "a"