Inzynierka/Lib/site-packages/pandas/tests/arrays/interval/test_interval.py
2023-06-02 12:51:02 +02:00

424 lines
14 KiB
Python

import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Index,
Interval,
IntervalIndex,
Timedelta,
Timestamp,
date_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import IntervalArray
@pytest.fixture(
params=[
(Index([0, 2, 4]), Index([1, 3, 5])),
(Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])),
(timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)),
(date_range("20170101", periods=3), date_range("20170102", periods=3)),
(
date_range("20170101", periods=3, tz="US/Eastern"),
date_range("20170102", periods=3, tz="US/Eastern"),
),
],
ids=lambda x: str(x[0].dtype),
)
def left_right_dtypes(request):
"""
Fixture for building an IntervalArray from various dtypes
"""
return request.param
class TestAttributes:
@pytest.mark.parametrize(
"left, right",
[
(0, 1),
(Timedelta("0 days"), Timedelta("1 day")),
(Timestamp("2018-01-01"), Timestamp("2018-01-02")),
(
Timestamp("2018-01-01", tz="US/Eastern"),
Timestamp("2018-01-02", tz="US/Eastern"),
),
],
)
@pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex])
def test_is_empty(self, constructor, left, right, closed):
# GH27219
tuples = [(left, left), (left, right), np.nan]
expected = np.array([closed != "both", False, False])
result = constructor.from_tuples(tuples, closed=closed).is_empty
tm.assert_numpy_array_equal(result, expected)
class TestMethods:
@pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
def test_set_closed(self, closed, new_closed):
# GH 21670
array = IntervalArray.from_breaks(range(10), closed=closed)
result = array.set_closed(new_closed)
expected = IntervalArray.from_breaks(range(10), closed=new_closed)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"other",
[
Interval(0, 1, closed="right"),
IntervalArray.from_breaks([1, 2, 3, 4], closed="right"),
],
)
def test_where_raises(self, other):
# GH#45768 The IntervalArray methods raises; the Series method coerces
ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left"))
mask = np.array([True, False, True])
match = "'value.closed' is 'right', expected 'left'."
with pytest.raises(ValueError, match=match):
ser.array._where(mask, other)
res = ser.where(mask, other=other)
expected = ser.astype(object).where(mask, other)
tm.assert_series_equal(res, expected)
def test_shift(self):
# https://github.com/pandas-dev/pandas/issues/31495, GH#22428, GH#31502
a = IntervalArray.from_breaks([1, 2, 3])
result = a.shift()
# int -> float
expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)])
tm.assert_interval_array_equal(result, expected)
msg = "can only insert Interval objects and NA into an IntervalArray"
with pytest.raises(TypeError, match=msg):
a.shift(1, fill_value=pd.NaT)
def test_shift_datetime(self):
# GH#31502, GH#31504
a = IntervalArray.from_breaks(date_range("2000", periods=4))
result = a.shift(2)
expected = a.take([-1, -1, 0], allow_fill=True)
tm.assert_interval_array_equal(result, expected)
result = a.shift(-1)
expected = a.take([1, 2, -1], allow_fill=True)
tm.assert_interval_array_equal(result, expected)
msg = "can only insert Interval objects and NA into an IntervalArray"
with pytest.raises(TypeError, match=msg):
a.shift(1, fill_value=np.timedelta64("NaT", "ns"))
class TestSetitem:
def test_set_na(self, left_right_dtypes):
left, right = left_right_dtypes
left = left.copy(deep=True)
right = right.copy(deep=True)
result = IntervalArray.from_arrays(left, right)
if result.dtype.subtype.kind not in ["m", "M"]:
msg = "'value' should be an interval type, got <.*NaTType'> instead."
with pytest.raises(TypeError, match=msg):
result[0] = pd.NaT
if result.dtype.subtype.kind in ["i", "u"]:
msg = "Cannot set float NaN to integer-backed IntervalArray"
# GH#45484 TypeError, not ValueError, matches what we get with
# non-NA un-holdable value.
with pytest.raises(TypeError, match=msg):
result[0] = np.NaN
return
result[0] = np.nan
expected_left = Index([left._na_value] + list(left[1:]))
expected_right = Index([right._na_value] + list(right[1:]))
expected = IntervalArray.from_arrays(expected_left, expected_right)
tm.assert_extension_array_equal(result, expected)
def test_setitem_mismatched_closed(self):
arr = IntervalArray.from_breaks(range(4))
orig = arr.copy()
other = arr.set_closed("both")
msg = "'value.closed' is 'both', expected 'right'"
with pytest.raises(ValueError, match=msg):
arr[0] = other[0]
with pytest.raises(ValueError, match=msg):
arr[:1] = other[:1]
with pytest.raises(ValueError, match=msg):
arr[:0] = other[:0]
with pytest.raises(ValueError, match=msg):
arr[:] = other[::-1]
with pytest.raises(ValueError, match=msg):
arr[:] = list(other[::-1])
with pytest.raises(ValueError, match=msg):
arr[:] = other[::-1].astype(object)
with pytest.raises(ValueError, match=msg):
arr[:] = other[::-1].astype("category")
# empty list should be no-op
arr[:0] = []
tm.assert_interval_array_equal(arr, orig)
def test_repr():
# GH 25022
arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
result = repr(arr)
expected = (
"<IntervalArray>\n"
"[(0, 1], (1, 2]]\n"
"Length: 2, dtype: interval[int64, right]"
)
assert result == expected
class TestReductions:
def test_min_max_invalid_axis(self, left_right_dtypes):
left, right = left_right_dtypes
left = left.copy(deep=True)
right = right.copy(deep=True)
arr = IntervalArray.from_arrays(left, right)
msg = "`axis` must be fewer than the number of dimensions"
for axis in [-2, 1]:
with pytest.raises(ValueError, match=msg):
arr.min(axis=axis)
with pytest.raises(ValueError, match=msg):
arr.max(axis=axis)
msg = "'>=' not supported between"
with pytest.raises(TypeError, match=msg):
arr.min(axis="foo")
with pytest.raises(TypeError, match=msg):
arr.max(axis="foo")
def test_min_max(self, left_right_dtypes, index_or_series_or_array):
# GH#44746
left, right = left_right_dtypes
left = left.copy(deep=True)
right = right.copy(deep=True)
arr = IntervalArray.from_arrays(left, right)
# The expected results below are only valid if monotonic
assert left.is_monotonic_increasing
assert Index(arr).is_monotonic_increasing
MIN = arr[0]
MAX = arr[-1]
indexer = np.arange(len(arr))
np.random.shuffle(indexer)
arr = arr.take(indexer)
arr_na = arr.insert(2, np.nan)
arr = index_or_series_or_array(arr)
arr_na = index_or_series_or_array(arr_na)
for skipna in [True, False]:
res = arr.min(skipna=skipna)
assert res == MIN
assert type(res) == type(MIN)
res = arr.max(skipna=skipna)
assert res == MAX
assert type(res) == type(MAX)
res = arr_na.min(skipna=False)
assert np.isnan(res)
res = arr_na.max(skipna=False)
assert np.isnan(res)
res = arr_na.min(skipna=True)
assert res == MIN
assert type(res) == type(MIN)
res = arr_na.max(skipna=True)
assert res == MAX
assert type(res) == type(MAX)
# ----------------------------------------------------------------------------
# Arrow interaction
pyarrow_skip = td.skip_if_no("pyarrow")
@pyarrow_skip
def test_arrow_extension_type():
import pyarrow as pa
from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
p1 = ArrowIntervalType(pa.int64(), "left")
p2 = ArrowIntervalType(pa.int64(), "left")
p3 = ArrowIntervalType(pa.int64(), "right")
assert p1.closed == "left"
assert p1 == p2
assert p1 != p3
assert hash(p1) == hash(p2)
assert hash(p1) != hash(p3)
@pyarrow_skip
def test_arrow_array():
import pyarrow as pa
from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
intervals = pd.interval_range(1, 5, freq=1).array
result = pa.array(intervals)
assert isinstance(result.type, ArrowIntervalType)
assert result.type.closed == intervals.closed
assert result.type.subtype == pa.int64()
assert result.storage.field("left").equals(pa.array([1, 2, 3, 4], type="int64"))
assert result.storage.field("right").equals(pa.array([2, 3, 4, 5], type="int64"))
expected = pa.array([{"left": i, "right": i + 1} for i in range(1, 5)])
assert result.storage.equals(expected)
# convert to its storage type
result = pa.array(intervals, type=expected.type)
assert result.equals(expected)
# unsupported conversions
with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
pa.array(intervals, type="float64")
with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
pa.array(intervals, type=ArrowIntervalType(pa.float64(), "left"))
@pyarrow_skip
def test_arrow_array_missing():
import pyarrow as pa
from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
arr = IntervalArray.from_breaks([0.0, 1.0, 2.0, 3.0])
arr[1] = None
result = pa.array(arr)
assert isinstance(result.type, ArrowIntervalType)
assert result.type.closed == arr.closed
assert result.type.subtype == pa.float64()
# fields have missing values (not NaN)
left = pa.array([0.0, None, 2.0], type="float64")
right = pa.array([1.0, None, 3.0], type="float64")
assert result.storage.field("left").equals(left)
assert result.storage.field("right").equals(right)
# structarray itself also has missing values on the array level
vals = [
{"left": 0.0, "right": 1.0},
{"left": None, "right": None},
{"left": 2.0, "right": 3.0},
]
expected = pa.StructArray.from_pandas(vals, mask=np.array([False, True, False]))
assert result.storage.equals(expected)
@pyarrow_skip
@pytest.mark.parametrize(
"breaks",
[[0.0, 1.0, 2.0, 3.0], date_range("2017", periods=4, freq="D")],
ids=["float", "datetime64[ns]"],
)
def test_arrow_table_roundtrip(breaks):
import pyarrow as pa
from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
arr = IntervalArray.from_breaks(breaks)
arr[1] = None
df = pd.DataFrame({"a": arr})
table = pa.table(df)
assert isinstance(table.field("a").type, ArrowIntervalType)
result = table.to_pandas()
assert isinstance(result["a"].dtype, pd.IntervalDtype)
tm.assert_frame_equal(result, df)
table2 = pa.concat_tables([table, table])
result = table2.to_pandas()
expected = pd.concat([df, df], ignore_index=True)
tm.assert_frame_equal(result, expected)
# GH-41040
table = pa.table(
[pa.chunked_array([], type=table.column(0).type)], schema=table.schema
)
result = table.to_pandas()
tm.assert_frame_equal(result, expected[0:0])
@pyarrow_skip
@pytest.mark.parametrize(
"breaks",
[[0.0, 1.0, 2.0, 3.0], date_range("2017", periods=4, freq="D")],
ids=["float", "datetime64[ns]"],
)
def test_arrow_table_roundtrip_without_metadata(breaks):
import pyarrow as pa
arr = IntervalArray.from_breaks(breaks)
arr[1] = None
df = pd.DataFrame({"a": arr})
table = pa.table(df)
# remove the metadata
table = table.replace_schema_metadata()
assert table.schema.metadata is None
result = table.to_pandas()
assert isinstance(result["a"].dtype, pd.IntervalDtype)
tm.assert_frame_equal(result, df)
@pyarrow_skip
def test_from_arrow_from_raw_struct_array():
# in case pyarrow lost the Interval extension type (eg on parquet roundtrip
# with datetime64[ns] subtype, see GH-45881), still allow conversion
# from arrow to IntervalArray
import pyarrow as pa
arr = pa.array([{"left": 0, "right": 1}, {"left": 1, "right": 2}])
dtype = pd.IntervalDtype(np.dtype("int64"), closed="neither")
result = dtype.__from_arrow__(arr)
expected = IntervalArray.from_breaks(
np.array([0, 1, 2], dtype="int64"), closed="neither"
)
tm.assert_extension_array_equal(result, expected)
result = dtype.__from_arrow__(pa.chunked_array([arr]))
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("timezone", ["UTC", "US/Pacific", "GMT"])
def test_interval_index_subtype(timezone, inclusive_endpoints_fixture):
# GH 46999
dates = date_range("2022", periods=3, tz=timezone)
dtype = f"interval[datetime64[ns, {timezone}], {inclusive_endpoints_fixture}]"
result = IntervalIndex.from_arrays(
["2022-01-01", "2022-01-02"],
["2022-01-02", "2022-01-03"],
closed=inclusive_endpoints_fixture,
dtype=dtype,
)
expected = IntervalIndex.from_arrays(
dates[:-1], dates[1:], closed=inclusive_endpoints_fixture
)
tm.assert_index_equal(result, expected)