Inzynierka/Lib/site-packages/pandas/tests/arrays/sparse/test_combine_concat.py
2023-06-02 12:51:02 +02:00

63 lines
2.6 KiB
Python

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.sparse import SparseArray
class TestSparseArrayConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
result = SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
# since we aren't don't merge sparse blocs across arrays
# in to_concat
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
assert result.kind == kind
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_uses_first_kind(self, kind):
other = "integer" if kind == "block" else "block"
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=other)
result = SparseArray._concat_same_type([a, b])
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
assert result.kind == kind
@pytest.mark.parametrize(
"other, expected_dtype",
[
# compatible dtype -> preserve sparse
(pd.Series([3, 4, 5], dtype="int64"), pd.SparseDtype("int64", 0)),
# (pd.Series([3, 4, 5], dtype="Int64"), pd.SparseDtype("int64", 0)),
# incompatible dtype -> Sparse[common dtype]
(pd.Series([1.5, 2.5, 3.5], dtype="float64"), pd.SparseDtype("float64", 0)),
# incompatible dtype -> Sparse[object] dtype
(pd.Series(["a", "b", "c"], dtype=object), pd.SparseDtype(object, 0)),
# categorical with compatible categories -> dtype of the categories
(pd.Series([3, 4, 5], dtype="category"), np.dtype("int64")),
(pd.Series([1.5, 2.5, 3.5], dtype="category"), np.dtype("float64")),
# categorical with incompatible categories -> object dtype
(pd.Series(["a", "b", "c"], dtype="category"), np.dtype(object)),
],
)
def test_concat_with_non_sparse(other, expected_dtype):
# https://github.com/pandas-dev/pandas/issues/34336
s_sparse = pd.Series([1, 0, 2], dtype=pd.SparseDtype("int64", 0))
result = pd.concat([s_sparse, other], ignore_index=True)
expected = pd.Series(list(s_sparse) + list(other)).astype(expected_dtype)
tm.assert_series_equal(result, expected)
result = pd.concat([other, s_sparse], ignore_index=True)
expected = pd.Series(list(other) + list(s_sparse)).astype(expected_dtype)
tm.assert_series_equal(result, expected)