553 lines
19 KiB
Python
553 lines
19 KiB
Python
import operator
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas._libs.sparse as splib
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import Series
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays.sparse import (
|
|
BlockIndex,
|
|
IntIndex,
|
|
make_sparse_index,
|
|
)
|
|
|
|
TEST_LENGTH = 20
|
|
|
|
plain_case = [
|
|
[0, 7, 15],
|
|
[3, 5, 5],
|
|
[2, 9, 14],
|
|
[2, 3, 5],
|
|
[2, 9, 15],
|
|
[1, 3, 4],
|
|
]
|
|
delete_blocks = [
|
|
[0, 5],
|
|
[4, 4],
|
|
[1],
|
|
[4],
|
|
[1],
|
|
[3],
|
|
]
|
|
split_blocks = [
|
|
[0],
|
|
[10],
|
|
[0, 5],
|
|
[3, 7],
|
|
[0, 5],
|
|
[3, 5],
|
|
]
|
|
skip_block = [
|
|
[10],
|
|
[5],
|
|
[0, 12],
|
|
[5, 3],
|
|
[12],
|
|
[3],
|
|
]
|
|
|
|
no_intersect = [
|
|
[0, 10],
|
|
[4, 6],
|
|
[5, 17],
|
|
[4, 2],
|
|
[],
|
|
[],
|
|
]
|
|
|
|
one_empty = [
|
|
[0],
|
|
[5],
|
|
[],
|
|
[],
|
|
[],
|
|
[],
|
|
]
|
|
|
|
both_empty = [ # type: ignore[var-annotated]
|
|
[],
|
|
[],
|
|
[],
|
|
[],
|
|
[],
|
|
[],
|
|
]
|
|
|
|
CASES = [plain_case, delete_blocks, split_blocks, skip_block, no_intersect, one_empty]
|
|
IDS = [
|
|
"plain_case",
|
|
"delete_blocks",
|
|
"split_blocks",
|
|
"skip_block",
|
|
"no_intersect",
|
|
"one_empty",
|
|
]
|
|
|
|
|
|
class TestSparseIndexUnion:
|
|
@pytest.mark.parametrize(
|
|
"xloc, xlen, yloc, ylen, eloc, elen",
|
|
[
|
|
[[0], [5], [5], [4], [0], [9]],
|
|
[[0, 10], [5, 5], [2, 17], [5, 2], [0, 10, 17], [7, 5, 2]],
|
|
[[1], [5], [3], [5], [1], [7]],
|
|
[[2, 10], [4, 4], [4], [8], [2], [12]],
|
|
[[0, 5], [3, 5], [0], [7], [0], [10]],
|
|
[[2, 10], [4, 4], [4, 13], [8, 4], [2], [15]],
|
|
[[2], [15], [4, 9, 14], [3, 2, 2], [2], [15]],
|
|
[[0, 10], [3, 3], [5, 15], [2, 2], [0, 5, 10, 15], [3, 2, 3, 2]],
|
|
],
|
|
)
|
|
def test_index_make_union(self, xloc, xlen, yloc, ylen, eloc, elen):
|
|
# Case 1
|
|
# x: ----
|
|
# y: ----
|
|
# r: --------
|
|
# Case 2
|
|
# x: ----- -----
|
|
# y: ----- --
|
|
# Case 3
|
|
# x: ------
|
|
# y: -------
|
|
# r: ----------
|
|
# Case 4
|
|
# x: ------ -----
|
|
# y: -------
|
|
# r: -------------
|
|
# Case 5
|
|
# x: --- -----
|
|
# y: -------
|
|
# r: -------------
|
|
# Case 6
|
|
# x: ------ -----
|
|
# y: ------- ---
|
|
# r: -------------
|
|
# Case 7
|
|
# x: ----------------------
|
|
# y: ---- ---- ---
|
|
# r: ----------------------
|
|
# Case 8
|
|
# x: ---- ---
|
|
# y: --- ---
|
|
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
|
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
|
bresult = xindex.make_union(yindex)
|
|
assert isinstance(bresult, BlockIndex)
|
|
tm.assert_numpy_array_equal(bresult.blocs, np.array(eloc, dtype=np.int32))
|
|
tm.assert_numpy_array_equal(bresult.blengths, np.array(elen, dtype=np.int32))
|
|
|
|
ixindex = xindex.to_int_index()
|
|
iyindex = yindex.to_int_index()
|
|
iresult = ixindex.make_union(iyindex)
|
|
assert isinstance(iresult, IntIndex)
|
|
tm.assert_numpy_array_equal(iresult.indices, bresult.to_int_index().indices)
|
|
|
|
def test_int_index_make_union(self):
|
|
a = IntIndex(5, np.array([0, 3, 4], dtype=np.int32))
|
|
b = IntIndex(5, np.array([0, 2], dtype=np.int32))
|
|
res = a.make_union(b)
|
|
exp = IntIndex(5, np.array([0, 2, 3, 4], np.int32))
|
|
assert res.equals(exp)
|
|
|
|
a = IntIndex(5, np.array([], dtype=np.int32))
|
|
b = IntIndex(5, np.array([0, 2], dtype=np.int32))
|
|
res = a.make_union(b)
|
|
exp = IntIndex(5, np.array([0, 2], np.int32))
|
|
assert res.equals(exp)
|
|
|
|
a = IntIndex(5, np.array([], dtype=np.int32))
|
|
b = IntIndex(5, np.array([], dtype=np.int32))
|
|
res = a.make_union(b)
|
|
exp = IntIndex(5, np.array([], np.int32))
|
|
assert res.equals(exp)
|
|
|
|
a = IntIndex(5, np.array([0, 1, 2, 3, 4], dtype=np.int32))
|
|
b = IntIndex(5, np.array([0, 1, 2, 3, 4], dtype=np.int32))
|
|
res = a.make_union(b)
|
|
exp = IntIndex(5, np.array([0, 1, 2, 3, 4], np.int32))
|
|
assert res.equals(exp)
|
|
|
|
a = IntIndex(5, np.array([0, 1], dtype=np.int32))
|
|
b = IntIndex(4, np.array([0, 1], dtype=np.int32))
|
|
|
|
msg = "Indices must reference same underlying length"
|
|
with pytest.raises(ValueError, match=msg):
|
|
a.make_union(b)
|
|
|
|
|
|
class TestSparseIndexIntersect:
|
|
@td.skip_if_windows
|
|
@pytest.mark.parametrize("xloc, xlen, yloc, ylen, eloc, elen", CASES, ids=IDS)
|
|
def test_intersect(self, xloc, xlen, yloc, ylen, eloc, elen):
|
|
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
|
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
|
expected = BlockIndex(TEST_LENGTH, eloc, elen)
|
|
longer_index = BlockIndex(TEST_LENGTH + 1, yloc, ylen)
|
|
|
|
result = xindex.intersect(yindex)
|
|
assert result.equals(expected)
|
|
result = xindex.to_int_index().intersect(yindex.to_int_index())
|
|
assert result.equals(expected.to_int_index())
|
|
|
|
msg = "Indices must reference same underlying length"
|
|
with pytest.raises(Exception, match=msg):
|
|
xindex.intersect(longer_index)
|
|
with pytest.raises(Exception, match=msg):
|
|
xindex.to_int_index().intersect(longer_index.to_int_index())
|
|
|
|
def test_intersect_empty(self):
|
|
xindex = IntIndex(4, np.array([], dtype=np.int32))
|
|
yindex = IntIndex(4, np.array([2, 3], dtype=np.int32))
|
|
assert xindex.intersect(yindex).equals(xindex)
|
|
assert yindex.intersect(xindex).equals(xindex)
|
|
|
|
xindex = xindex.to_block_index()
|
|
yindex = yindex.to_block_index()
|
|
assert xindex.intersect(yindex).equals(xindex)
|
|
assert yindex.intersect(xindex).equals(xindex)
|
|
|
|
@pytest.mark.parametrize(
|
|
"case",
|
|
[
|
|
IntIndex(5, np.array([1, 2], dtype=np.int32)), # type: ignore[arg-type]
|
|
IntIndex(5, np.array([0, 2, 4], dtype=np.int32)), # type: ignore[arg-type]
|
|
IntIndex(0, np.array([], dtype=np.int32)), # type: ignore[arg-type]
|
|
IntIndex(5, np.array([], dtype=np.int32)), # type: ignore[arg-type]
|
|
],
|
|
)
|
|
def test_intersect_identical(self, case):
|
|
assert case.intersect(case).equals(case)
|
|
case = case.to_block_index()
|
|
assert case.intersect(case).equals(case)
|
|
|
|
|
|
class TestSparseIndexCommon:
|
|
def test_int_internal(self):
|
|
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="integer")
|
|
assert isinstance(idx, IntIndex)
|
|
assert idx.npoints == 2
|
|
tm.assert_numpy_array_equal(idx.indices, np.array([2, 3], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="integer")
|
|
assert isinstance(idx, IntIndex)
|
|
assert idx.npoints == 0
|
|
tm.assert_numpy_array_equal(idx.indices, np.array([], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(
|
|
4, np.array([0, 1, 2, 3], dtype=np.int32), kind="integer"
|
|
)
|
|
assert isinstance(idx, IntIndex)
|
|
assert idx.npoints == 4
|
|
tm.assert_numpy_array_equal(idx.indices, np.array([0, 1, 2, 3], dtype=np.int32))
|
|
|
|
def test_block_internal(self):
|
|
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 2
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([2], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([2], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 0
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 4
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([0], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([4], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 3
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([0, 2], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([1, 2], dtype=np.int32))
|
|
|
|
@pytest.mark.parametrize("kind", ["integer", "block"])
|
|
def test_lookup(self, kind):
|
|
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind=kind)
|
|
assert idx.lookup(-1) == -1
|
|
assert idx.lookup(0) == -1
|
|
assert idx.lookup(1) == -1
|
|
assert idx.lookup(2) == 0
|
|
assert idx.lookup(3) == 1
|
|
assert idx.lookup(4) == -1
|
|
|
|
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind=kind)
|
|
|
|
for i in range(-1, 5):
|
|
assert idx.lookup(i) == -1
|
|
|
|
idx = make_sparse_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind=kind)
|
|
assert idx.lookup(-1) == -1
|
|
assert idx.lookup(0) == 0
|
|
assert idx.lookup(1) == 1
|
|
assert idx.lookup(2) == 2
|
|
assert idx.lookup(3) == 3
|
|
assert idx.lookup(4) == -1
|
|
|
|
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind=kind)
|
|
assert idx.lookup(-1) == -1
|
|
assert idx.lookup(0) == 0
|
|
assert idx.lookup(1) == -1
|
|
assert idx.lookup(2) == 1
|
|
assert idx.lookup(3) == 2
|
|
assert idx.lookup(4) == -1
|
|
|
|
@pytest.mark.parametrize("kind", ["integer", "block"])
|
|
def test_lookup_array(self, kind):
|
|
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind=kind)
|
|
|
|
res = idx.lookup_array(np.array([-1, 0, 2], dtype=np.int32))
|
|
exp = np.array([-1, -1, 0], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
res = idx.lookup_array(np.array([4, 2, 1, 3], dtype=np.int32))
|
|
exp = np.array([-1, 0, -1, 1], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind=kind)
|
|
res = idx.lookup_array(np.array([-1, 0, 2, 4], dtype=np.int32))
|
|
exp = np.array([-1, -1, -1, -1], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
idx = make_sparse_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind=kind)
|
|
res = idx.lookup_array(np.array([-1, 0, 2], dtype=np.int32))
|
|
exp = np.array([-1, 0, 2], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
res = idx.lookup_array(np.array([4, 2, 1, 3], dtype=np.int32))
|
|
exp = np.array([-1, 2, 1, 3], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind=kind)
|
|
res = idx.lookup_array(np.array([2, 1, 3, 0], dtype=np.int32))
|
|
exp = np.array([1, -1, 2, 0], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
res = idx.lookup_array(np.array([1, 4, 2, 5], dtype=np.int32))
|
|
exp = np.array([-1, -1, 1, -1], dtype=np.int32)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
@pytest.mark.parametrize(
|
|
"idx, expected",
|
|
[
|
|
[0, -1],
|
|
[5, 0],
|
|
[7, 2],
|
|
[8, -1],
|
|
[9, -1],
|
|
[10, -1],
|
|
[11, -1],
|
|
[12, 3],
|
|
[17, 8],
|
|
[18, -1],
|
|
],
|
|
)
|
|
def test_lookup_basics(self, idx, expected):
|
|
bindex = BlockIndex(20, [5, 12], [3, 6])
|
|
assert bindex.lookup(idx) == expected
|
|
|
|
iindex = bindex.to_int_index()
|
|
assert iindex.lookup(idx) == expected
|
|
|
|
|
|
class TestBlockIndex:
|
|
def test_block_internal(self):
|
|
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 2
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([2], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([2], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 0
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 4
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([0], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([4], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind="block")
|
|
assert isinstance(idx, BlockIndex)
|
|
assert idx.npoints == 3
|
|
tm.assert_numpy_array_equal(idx.blocs, np.array([0, 2], dtype=np.int32))
|
|
tm.assert_numpy_array_equal(idx.blengths, np.array([1, 2], dtype=np.int32))
|
|
|
|
@pytest.mark.parametrize("i", [5, 10, 100, 101])
|
|
def test_make_block_boundary(self, i):
|
|
idx = make_sparse_index(i, np.arange(0, i, 2, dtype=np.int32), kind="block")
|
|
|
|
exp = np.arange(0, i, 2, dtype=np.int32)
|
|
tm.assert_numpy_array_equal(idx.blocs, exp)
|
|
tm.assert_numpy_array_equal(idx.blengths, np.ones(len(exp), dtype=np.int32))
|
|
|
|
def test_equals(self):
|
|
index = BlockIndex(10, [0, 4], [2, 5])
|
|
|
|
assert index.equals(index)
|
|
assert not index.equals(BlockIndex(10, [0, 4], [2, 6]))
|
|
|
|
def test_check_integrity(self):
|
|
locs = []
|
|
lengths = []
|
|
|
|
# 0-length OK
|
|
BlockIndex(0, locs, lengths)
|
|
|
|
# also OK even though empty
|
|
BlockIndex(1, locs, lengths)
|
|
|
|
msg = "Block 0 extends beyond end"
|
|
with pytest.raises(ValueError, match=msg):
|
|
BlockIndex(10, [5], [10])
|
|
|
|
msg = "Block 0 overlaps"
|
|
with pytest.raises(ValueError, match=msg):
|
|
BlockIndex(10, [2, 5], [5, 3])
|
|
|
|
def test_to_int_index(self):
|
|
locs = [0, 10]
|
|
lengths = [4, 6]
|
|
exp_inds = [0, 1, 2, 3, 10, 11, 12, 13, 14, 15]
|
|
|
|
block = BlockIndex(20, locs, lengths)
|
|
dense = block.to_int_index()
|
|
|
|
tm.assert_numpy_array_equal(dense.indices, np.array(exp_inds, dtype=np.int32))
|
|
|
|
def test_to_block_index(self):
|
|
index = BlockIndex(10, [0, 5], [4, 5])
|
|
assert index.to_block_index() is index
|
|
|
|
|
|
class TestIntIndex:
|
|
def test_check_integrity(self):
|
|
# Too many indices than specified in self.length
|
|
msg = "Too many indices"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=1, indices=[1, 2, 3])
|
|
|
|
# No index can be negative.
|
|
msg = "No index can be less than zero"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=5, indices=[1, -2, 3])
|
|
|
|
# No index can be negative.
|
|
msg = "No index can be less than zero"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=5, indices=[1, -2, 3])
|
|
|
|
# All indices must be less than the length.
|
|
msg = "All indices must be less than the length"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=5, indices=[1, 2, 5])
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=5, indices=[1, 2, 6])
|
|
|
|
# Indices must be strictly ascending.
|
|
msg = "Indices must be strictly increasing"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=5, indices=[1, 3, 2])
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
IntIndex(length=5, indices=[1, 3, 3])
|
|
|
|
def test_int_internal(self):
|
|
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="integer")
|
|
assert isinstance(idx, IntIndex)
|
|
assert idx.npoints == 2
|
|
tm.assert_numpy_array_equal(idx.indices, np.array([2, 3], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="integer")
|
|
assert isinstance(idx, IntIndex)
|
|
assert idx.npoints == 0
|
|
tm.assert_numpy_array_equal(idx.indices, np.array([], dtype=np.int32))
|
|
|
|
idx = make_sparse_index(
|
|
4, np.array([0, 1, 2, 3], dtype=np.int32), kind="integer"
|
|
)
|
|
assert isinstance(idx, IntIndex)
|
|
assert idx.npoints == 4
|
|
tm.assert_numpy_array_equal(idx.indices, np.array([0, 1, 2, 3], dtype=np.int32))
|
|
|
|
def test_equals(self):
|
|
index = IntIndex(10, [0, 1, 2, 3, 4])
|
|
assert index.equals(index)
|
|
assert not index.equals(IntIndex(10, [0, 1, 2, 3]))
|
|
|
|
@pytest.mark.parametrize("xloc, xlen, yloc, ylen, eloc, elen", CASES, ids=IDS)
|
|
def test_to_block_index(self, xloc, xlen, yloc, ylen, eloc, elen):
|
|
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
|
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
|
|
|
# see if survive the round trip
|
|
xbindex = xindex.to_int_index().to_block_index()
|
|
ybindex = yindex.to_int_index().to_block_index()
|
|
assert isinstance(xbindex, BlockIndex)
|
|
assert xbindex.equals(xindex)
|
|
assert ybindex.equals(yindex)
|
|
|
|
def test_to_int_index(self):
|
|
index = IntIndex(10, [2, 3, 4, 5, 6])
|
|
assert index.to_int_index() is index
|
|
|
|
|
|
class TestSparseOperators:
|
|
@pytest.mark.parametrize("opname", ["add", "sub", "mul", "truediv", "floordiv"])
|
|
@pytest.mark.parametrize("xloc, xlen, yloc, ylen, eloc, elen", CASES, ids=IDS)
|
|
def test_op(self, opname, xloc, xlen, yloc, ylen, eloc, elen):
|
|
sparse_op = getattr(splib, f"sparse_{opname}_float64")
|
|
python_op = getattr(operator, opname)
|
|
|
|
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
|
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
|
|
|
xdindex = xindex.to_int_index()
|
|
ydindex = yindex.to_int_index()
|
|
|
|
x = np.arange(xindex.npoints) * 10.0 + 1
|
|
y = np.arange(yindex.npoints) * 100.0 + 1
|
|
|
|
xfill = 0
|
|
yfill = 2
|
|
|
|
result_block_vals, rb_index, bfill = sparse_op(
|
|
x, xindex, xfill, y, yindex, yfill
|
|
)
|
|
result_int_vals, ri_index, ifill = sparse_op(
|
|
x, xdindex, xfill, y, ydindex, yfill
|
|
)
|
|
|
|
assert rb_index.to_int_index().equals(ri_index)
|
|
tm.assert_numpy_array_equal(result_block_vals, result_int_vals)
|
|
assert bfill == ifill
|
|
|
|
# check versus Series...
|
|
xseries = Series(x, xdindex.indices)
|
|
xseries = xseries.reindex(np.arange(TEST_LENGTH)).fillna(xfill)
|
|
|
|
yseries = Series(y, ydindex.indices)
|
|
yseries = yseries.reindex(np.arange(TEST_LENGTH)).fillna(yfill)
|
|
|
|
series_result = python_op(xseries, yseries)
|
|
series_result = series_result.reindex(ri_index.indices)
|
|
|
|
tm.assert_numpy_array_equal(result_block_vals, series_result.values)
|
|
tm.assert_numpy_array_equal(result_int_vals, series_result.values)
|