572 lines
17 KiB
Python
572 lines
17 KiB
Python
from datetime import datetime
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import MergeError
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
date_range,
|
|
period_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.reshape.concat import concat
|
|
|
|
|
|
@pytest.fixture
|
|
def frame_with_period_index():
|
|
return DataFrame(
|
|
data=np.arange(20).reshape(4, 5),
|
|
columns=list("abcde"),
|
|
index=period_range(start="2000", freq="A", periods=4),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def left():
|
|
return DataFrame({"a": [20, 10, 0]}, index=[2, 1, 0])
|
|
|
|
|
|
@pytest.fixture
|
|
def right():
|
|
return DataFrame({"b": [300, 100, 200]}, index=[3, 1, 2])
|
|
|
|
|
|
@pytest.fixture
|
|
def left_no_dup():
|
|
return DataFrame(
|
|
{"a": ["a", "b", "c", "d"], "b": ["cat", "dog", "weasel", "horse"]},
|
|
index=range(4),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def right_no_dup():
|
|
return DataFrame(
|
|
{
|
|
"a": ["a", "b", "c", "d", "e"],
|
|
"c": ["meow", "bark", "um... weasel noise?", "nay", "chirp"],
|
|
},
|
|
index=range(5),
|
|
).set_index("a")
|
|
|
|
|
|
@pytest.fixture
|
|
def left_w_dups(left_no_dup):
|
|
return concat(
|
|
[left_no_dup, DataFrame({"a": ["a"], "b": ["cow"]}, index=[3])], sort=True
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def right_w_dups(right_no_dup):
|
|
return concat(
|
|
[right_no_dup, DataFrame({"a": ["e"], "c": ["moo"]}, index=[3])]
|
|
).set_index("a")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"how, sort, expected",
|
|
[
|
|
("inner", False, DataFrame({"a": [20, 10], "b": [200, 100]}, index=[2, 1])),
|
|
("inner", True, DataFrame({"a": [10, 20], "b": [100, 200]}, index=[1, 2])),
|
|
(
|
|
"left",
|
|
False,
|
|
DataFrame({"a": [20, 10, 0], "b": [200, 100, np.nan]}, index=[2, 1, 0]),
|
|
),
|
|
(
|
|
"left",
|
|
True,
|
|
DataFrame({"a": [0, 10, 20], "b": [np.nan, 100, 200]}, index=[0, 1, 2]),
|
|
),
|
|
(
|
|
"right",
|
|
False,
|
|
DataFrame({"a": [np.nan, 10, 20], "b": [300, 100, 200]}, index=[3, 1, 2]),
|
|
),
|
|
(
|
|
"right",
|
|
True,
|
|
DataFrame({"a": [10, 20, np.nan], "b": [100, 200, 300]}, index=[1, 2, 3]),
|
|
),
|
|
(
|
|
"outer",
|
|
False,
|
|
DataFrame(
|
|
{"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
|
|
index=[0, 1, 2, 3],
|
|
),
|
|
),
|
|
(
|
|
"outer",
|
|
True,
|
|
DataFrame(
|
|
{"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]},
|
|
index=[0, 1, 2, 3],
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_join(left, right, how, sort, expected):
|
|
result = left.join(right, how=how, sort=sort, validate="1:1")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_suffix_on_list_join():
|
|
first = DataFrame({"key": [1, 2, 3, 4, 5]})
|
|
second = DataFrame({"key": [1, 8, 3, 2, 5], "v1": [1, 2, 3, 4, 5]})
|
|
third = DataFrame({"keys": [5, 2, 3, 4, 1], "v2": [1, 2, 3, 4, 5]})
|
|
|
|
# check proper errors are raised
|
|
msg = "Suffixes not supported when joining multiple DataFrames"
|
|
with pytest.raises(ValueError, match=msg):
|
|
first.join([second], lsuffix="y")
|
|
with pytest.raises(ValueError, match=msg):
|
|
first.join([second, third], rsuffix="x")
|
|
with pytest.raises(ValueError, match=msg):
|
|
first.join([second, third], lsuffix="y", rsuffix="x")
|
|
with pytest.raises(ValueError, match="Indexes have overlapping values"):
|
|
first.join([second, third])
|
|
|
|
# no errors should be raised
|
|
arr_joined = first.join([third])
|
|
norm_joined = first.join(third)
|
|
tm.assert_frame_equal(arr_joined, norm_joined)
|
|
|
|
|
|
def test_join_invalid_validate(left_no_dup, right_no_dup):
|
|
# GH 46622
|
|
# Check invalid arguments
|
|
msg = (
|
|
'"invalid" is not a valid argument. '
|
|
"Valid arguments are:\n"
|
|
'- "1:1"\n'
|
|
'- "1:m"\n'
|
|
'- "m:1"\n'
|
|
'- "m:m"\n'
|
|
'- "one_to_one"\n'
|
|
'- "one_to_many"\n'
|
|
'- "many_to_one"\n'
|
|
'- "many_to_many"'
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
left_no_dup.merge(right_no_dup, on="a", validate="invalid")
|
|
|
|
|
|
def test_join_on_single_col_dup_on_right(left_no_dup, right_w_dups):
|
|
# GH 46622
|
|
# Dups on right allowed by one_to_many constraint
|
|
left_no_dup.join(
|
|
right_w_dups,
|
|
on="a",
|
|
validate="one_to_many",
|
|
)
|
|
|
|
# Dups on right not allowed by one_to_one constraint
|
|
msg = "Merge keys are not unique in right dataset; not a one-to-one merge"
|
|
with pytest.raises(MergeError, match=msg):
|
|
left_no_dup.join(
|
|
right_w_dups,
|
|
on="a",
|
|
validate="one_to_one",
|
|
)
|
|
|
|
|
|
def test_join_on_single_col_dup_on_left(left_w_dups, right_no_dup):
|
|
# GH 46622
|
|
# Dups on left allowed by many_to_one constraint
|
|
left_w_dups.join(
|
|
right_no_dup,
|
|
on="a",
|
|
validate="many_to_one",
|
|
)
|
|
|
|
# Dups on left not allowed by one_to_one constraint
|
|
msg = "Merge keys are not unique in left dataset; not a one-to-one merge"
|
|
with pytest.raises(MergeError, match=msg):
|
|
left_w_dups.join(
|
|
right_no_dup,
|
|
on="a",
|
|
validate="one_to_one",
|
|
)
|
|
|
|
|
|
def test_join_on_single_col_dup_on_both(left_w_dups, right_w_dups):
|
|
# GH 46622
|
|
# Dups on both allowed by many_to_many constraint
|
|
left_w_dups.join(right_w_dups, on="a", validate="many_to_many")
|
|
|
|
# Dups on both not allowed by many_to_one constraint
|
|
msg = "Merge keys are not unique in right dataset; not a many-to-one merge"
|
|
with pytest.raises(MergeError, match=msg):
|
|
left_w_dups.join(
|
|
right_w_dups,
|
|
on="a",
|
|
validate="many_to_one",
|
|
)
|
|
|
|
# Dups on both not allowed by one_to_many constraint
|
|
msg = "Merge keys are not unique in left dataset; not a one-to-many merge"
|
|
with pytest.raises(MergeError, match=msg):
|
|
left_w_dups.join(
|
|
right_w_dups,
|
|
on="a",
|
|
validate="one_to_many",
|
|
)
|
|
|
|
|
|
def test_join_on_multi_col_check_dup():
|
|
# GH 46622
|
|
# Two column join, dups in both, but jointly no dups
|
|
left = DataFrame(
|
|
{
|
|
"a": ["a", "a", "b", "b"],
|
|
"b": [0, 1, 0, 1],
|
|
"c": ["cat", "dog", "weasel", "horse"],
|
|
},
|
|
index=range(4),
|
|
).set_index(["a", "b"])
|
|
|
|
right = DataFrame(
|
|
{
|
|
"a": ["a", "a", "b"],
|
|
"b": [0, 1, 0],
|
|
"d": ["meow", "bark", "um... weasel noise?"],
|
|
},
|
|
index=range(3),
|
|
).set_index(["a", "b"])
|
|
|
|
expected_multi = DataFrame(
|
|
{
|
|
"a": ["a", "a", "b"],
|
|
"b": [0, 1, 0],
|
|
"c": ["cat", "dog", "weasel"],
|
|
"d": ["meow", "bark", "um... weasel noise?"],
|
|
},
|
|
index=range(3),
|
|
).set_index(["a", "b"])
|
|
|
|
# Jointly no dups allowed by one_to_one constraint
|
|
result = left.join(right, how="inner", validate="1:1")
|
|
tm.assert_frame_equal(result, expected_multi)
|
|
|
|
|
|
def test_join_index(float_frame):
|
|
# left / right
|
|
|
|
f = float_frame.loc[float_frame.index[:10], ["A", "B"]]
|
|
f2 = float_frame.loc[float_frame.index[5:], ["C", "D"]].iloc[::-1]
|
|
|
|
joined = f.join(f2)
|
|
tm.assert_index_equal(f.index, joined.index)
|
|
expected_columns = Index(["A", "B", "C", "D"])
|
|
tm.assert_index_equal(joined.columns, expected_columns)
|
|
|
|
joined = f.join(f2, how="left")
|
|
tm.assert_index_equal(joined.index, f.index)
|
|
tm.assert_index_equal(joined.columns, expected_columns)
|
|
|
|
joined = f.join(f2, how="right")
|
|
tm.assert_index_equal(joined.index, f2.index)
|
|
tm.assert_index_equal(joined.columns, expected_columns)
|
|
|
|
# inner
|
|
|
|
joined = f.join(f2, how="inner")
|
|
tm.assert_index_equal(joined.index, f.index[5:10])
|
|
tm.assert_index_equal(joined.columns, expected_columns)
|
|
|
|
# outer
|
|
|
|
joined = f.join(f2, how="outer")
|
|
tm.assert_index_equal(joined.index, float_frame.index.sort_values())
|
|
tm.assert_index_equal(joined.columns, expected_columns)
|
|
|
|
with pytest.raises(ValueError, match="join method"):
|
|
f.join(f2, how="foo")
|
|
|
|
# corner case - overlapping columns
|
|
msg = "columns overlap but no suffix"
|
|
for how in ("outer", "left", "inner"):
|
|
with pytest.raises(ValueError, match=msg):
|
|
float_frame.join(float_frame, how=how)
|
|
|
|
|
|
def test_join_index_more(float_frame):
|
|
af = float_frame.loc[:, ["A", "B"]]
|
|
bf = float_frame.loc[::2, ["C", "D"]]
|
|
|
|
expected = af.copy()
|
|
expected["C"] = float_frame["C"][::2]
|
|
expected["D"] = float_frame["D"][::2]
|
|
|
|
result = af.join(bf)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = af.join(bf, how="right")
|
|
tm.assert_frame_equal(result, expected[::2])
|
|
|
|
result = bf.join(af, how="right")
|
|
tm.assert_frame_equal(result, expected.loc[:, result.columns])
|
|
|
|
|
|
def test_join_index_series(float_frame):
|
|
df = float_frame.copy()
|
|
ser = df.pop(float_frame.columns[-1])
|
|
joined = df.join(ser)
|
|
|
|
tm.assert_frame_equal(joined, float_frame)
|
|
|
|
ser.name = None
|
|
with pytest.raises(ValueError, match="must have a name"):
|
|
df.join(ser)
|
|
|
|
|
|
def test_join_overlap(float_frame):
|
|
df1 = float_frame.loc[:, ["A", "B", "C"]]
|
|
df2 = float_frame.loc[:, ["B", "C", "D"]]
|
|
|
|
joined = df1.join(df2, lsuffix="_df1", rsuffix="_df2")
|
|
df1_suf = df1.loc[:, ["B", "C"]].add_suffix("_df1")
|
|
df2_suf = df2.loc[:, ["B", "C"]].add_suffix("_df2")
|
|
|
|
no_overlap = float_frame.loc[:, ["A", "D"]]
|
|
expected = df1_suf.join(df2_suf).join(no_overlap)
|
|
|
|
# column order not necessarily sorted
|
|
tm.assert_frame_equal(joined, expected.loc[:, joined.columns])
|
|
|
|
|
|
def test_join_period_index(frame_with_period_index):
|
|
other = frame_with_period_index.rename(columns=lambda key: f"{key}{key}")
|
|
|
|
joined_values = np.concatenate([frame_with_period_index.values] * 2, axis=1)
|
|
|
|
joined_cols = frame_with_period_index.columns.append(other.columns)
|
|
|
|
joined = frame_with_period_index.join(other)
|
|
expected = DataFrame(
|
|
data=joined_values, columns=joined_cols, index=frame_with_period_index.index
|
|
)
|
|
|
|
tm.assert_frame_equal(joined, expected)
|
|
|
|
|
|
def test_join_left_sequence_non_unique_index():
|
|
# https://github.com/pandas-dev/pandas/issues/19607
|
|
df1 = DataFrame({"a": [0, 10, 20]}, index=[1, 2, 3])
|
|
df2 = DataFrame({"b": [100, 200, 300]}, index=[4, 3, 2])
|
|
df3 = DataFrame({"c": [400, 500, 600]}, index=[2, 2, 4])
|
|
|
|
joined = df1.join([df2, df3], how="left")
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"a": [0, 10, 10, 20],
|
|
"b": [np.nan, 300, 300, 200],
|
|
"c": [np.nan, 400, 500, np.nan],
|
|
},
|
|
index=[1, 2, 2, 3],
|
|
)
|
|
|
|
tm.assert_frame_equal(joined, expected)
|
|
|
|
|
|
def test_join_list_series(float_frame):
|
|
# GH#46850
|
|
# Join a DataFrame with a list containing both a Series and a DataFrame
|
|
left = float_frame.A.to_frame()
|
|
right = [float_frame.B, float_frame[["C", "D"]]]
|
|
result = left.join(right)
|
|
tm.assert_frame_equal(result, float_frame)
|
|
|
|
|
|
@pytest.mark.parametrize("sort_kw", [True, False])
|
|
def test_suppress_future_warning_with_sort_kw(sort_kw):
|
|
a = DataFrame({"col1": [1, 2]}, index=["c", "a"])
|
|
|
|
b = DataFrame({"col2": [4, 5]}, index=["b", "a"])
|
|
|
|
c = DataFrame({"col3": [7, 8]}, index=["a", "b"])
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"col1": {"a": 2.0, "b": float("nan"), "c": 1.0},
|
|
"col2": {"a": 5.0, "b": 4.0, "c": float("nan")},
|
|
"col3": {"a": 7.0, "b": 8.0, "c": float("nan")},
|
|
}
|
|
)
|
|
if sort_kw is False:
|
|
expected = expected.reindex(index=["c", "a", "b"])
|
|
|
|
with tm.assert_produces_warning(None):
|
|
result = a.join([b, c], how="outer", sort=sort_kw)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
class TestDataFrameJoin:
|
|
def test_join(self, multiindex_dataframe_random_data):
|
|
frame = multiindex_dataframe_random_data
|
|
|
|
a = frame.loc[frame.index[:5], ["A"]]
|
|
b = frame.loc[frame.index[2:], ["B", "C"]]
|
|
|
|
joined = a.join(b, how="outer").reindex(frame.index)
|
|
expected = frame.copy().values.copy()
|
|
expected[np.isnan(joined.values)] = np.nan
|
|
expected = DataFrame(expected, index=frame.index, columns=frame.columns)
|
|
|
|
assert not np.isnan(joined.values).all()
|
|
|
|
tm.assert_frame_equal(joined, expected)
|
|
|
|
def test_join_segfault(self):
|
|
# GH#1532
|
|
df1 = DataFrame({"a": [1, 1], "b": [1, 2], "x": [1, 2]})
|
|
df2 = DataFrame({"a": [2, 2], "b": [1, 2], "y": [1, 2]})
|
|
df1 = df1.set_index(["a", "b"])
|
|
df2 = df2.set_index(["a", "b"])
|
|
# it works!
|
|
for how in ["left", "right", "outer"]:
|
|
df1.join(df2, how=how)
|
|
|
|
def test_join_str_datetime(self):
|
|
str_dates = ["20120209", "20120222"]
|
|
dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
|
|
|
|
A = DataFrame(str_dates, index=range(2), columns=["aa"])
|
|
C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates)
|
|
|
|
tst = A.join(C, on="aa")
|
|
|
|
assert len(tst.columns) == 3
|
|
|
|
def test_join_multiindex_leftright(self):
|
|
# GH 10741
|
|
df1 = DataFrame(
|
|
[
|
|
["a", "x", 0.471780],
|
|
["a", "y", 0.774908],
|
|
["a", "z", 0.563634],
|
|
["b", "x", -0.353756],
|
|
["b", "y", 0.368062],
|
|
["b", "z", -1.721840],
|
|
["c", "x", 1],
|
|
["c", "y", 2],
|
|
["c", "z", 3],
|
|
],
|
|
columns=["first", "second", "value1"],
|
|
).set_index(["first", "second"])
|
|
|
|
df2 = DataFrame([["a", 10], ["b", 20]], columns=["first", "value2"]).set_index(
|
|
["first"]
|
|
)
|
|
|
|
exp = DataFrame(
|
|
[
|
|
[0.471780, 10],
|
|
[0.774908, 10],
|
|
[0.563634, 10],
|
|
[-0.353756, 20],
|
|
[0.368062, 20],
|
|
[-1.721840, 20],
|
|
[1.000000, np.nan],
|
|
[2.000000, np.nan],
|
|
[3.000000, np.nan],
|
|
],
|
|
index=df1.index,
|
|
columns=["value1", "value2"],
|
|
)
|
|
|
|
# these must be the same results (but columns are flipped)
|
|
tm.assert_frame_equal(df1.join(df2, how="left"), exp)
|
|
tm.assert_frame_equal(df2.join(df1, how="right"), exp[["value2", "value1"]])
|
|
|
|
exp_idx = MultiIndex.from_product(
|
|
[["a", "b"], ["x", "y", "z"]], names=["first", "second"]
|
|
)
|
|
exp = DataFrame(
|
|
[
|
|
[0.471780, 10],
|
|
[0.774908, 10],
|
|
[0.563634, 10],
|
|
[-0.353756, 20],
|
|
[0.368062, 20],
|
|
[-1.721840, 20],
|
|
],
|
|
index=exp_idx,
|
|
columns=["value1", "value2"],
|
|
)
|
|
|
|
tm.assert_frame_equal(df1.join(df2, how="right"), exp)
|
|
tm.assert_frame_equal(df2.join(df1, how="left"), exp[["value2", "value1"]])
|
|
|
|
def test_join_multiindex_dates(self):
|
|
# GH 33692
|
|
date = pd.Timestamp(2000, 1, 1).date()
|
|
|
|
df1_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
|
|
df1 = DataFrame({"col1": [0]}, index=df1_index)
|
|
df2_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
|
|
df2 = DataFrame({"col2": [0]}, index=df2_index)
|
|
df3_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
|
|
df3 = DataFrame({"col3": [0]}, index=df3_index)
|
|
|
|
result = df1.join([df2, df3])
|
|
|
|
expected_index = MultiIndex.from_tuples([(0, date)], names=["index_0", "date"])
|
|
expected = DataFrame(
|
|
{"col1": [0], "col2": [0], "col3": [0]}, index=expected_index
|
|
)
|
|
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_merge_join_different_levels_raises(self):
|
|
# GH#9455
|
|
# GH 40993: For raising, enforced in 2.0
|
|
|
|
# first dataframe
|
|
df1 = DataFrame(columns=["a", "b"], data=[[1, 11], [0, 22]])
|
|
|
|
# second dataframe
|
|
columns = MultiIndex.from_tuples([("a", ""), ("c", "c1")])
|
|
df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]])
|
|
|
|
# merge
|
|
with pytest.raises(
|
|
MergeError, match="Not allowed to merge between different levels"
|
|
):
|
|
pd.merge(df1, df2, on="a")
|
|
|
|
# join, see discussion in GH#12219
|
|
with pytest.raises(
|
|
MergeError, match="Not allowed to merge between different levels"
|
|
):
|
|
df1.join(df2, on="a")
|
|
|
|
def test_frame_join_tzaware(self):
|
|
test1 = DataFrame(
|
|
np.zeros((6, 3)),
|
|
index=date_range(
|
|
"2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central"
|
|
),
|
|
)
|
|
test2 = DataFrame(
|
|
np.zeros((3, 3)),
|
|
index=date_range(
|
|
"2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"
|
|
),
|
|
columns=range(3, 6),
|
|
)
|
|
|
|
result = test1.join(test2, how="outer")
|
|
expected = test1.index.union(test2.index)
|
|
|
|
tm.assert_index_equal(result.index, expected)
|
|
assert result.index.tz.zone == "US/Central"
|