Inzynierka/Lib/site-packages/pandas/tests/frame/methods/test_quantile.py
2023-06-02 12:51:02 +02:00

990 lines
36 KiB
Python

import numpy as np
import pytest
from pandas.compat.numpy import (
np_percentile_argname,
np_version_under1p21,
)
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
)
import pandas._testing as tm
@pytest.fixture(
params=[["linear", "single"], ["nearest", "table"]], ids=lambda x: "-".join(x)
)
def interp_method(request):
"""(interpolation, method) arguments for quantile"""
return request.param
class TestDataFrameQuantile:
@pytest.mark.parametrize(
"df,expected",
[
[
DataFrame(
{
0: Series(pd.arrays.SparseArray([1, 2])),
1: Series(pd.arrays.SparseArray([3, 4])),
}
),
Series([1.5, 3.5], name=0.5),
],
[
DataFrame(Series([0.0, None, 1.0, 2.0], dtype="Sparse[float]")),
Series([1.0], name=0.5),
],
],
)
def test_quantile_sparse(self, df, expected):
# GH#17198
# GH#24600
result = df.quantile()
expected = expected.astype("Sparse[float]")
tm.assert_series_equal(result, expected)
def test_quantile(
self, datetime_frame, interp_method, using_array_manager, request
):
interpolation, method = interp_method
df = datetime_frame
result = df.quantile(
0.1, axis=0, numeric_only=True, interpolation=interpolation, method=method
)
expected = Series(
[np.percentile(df[col], 10) for col in df.columns],
index=df.columns,
name=0.1,
)
if interpolation == "linear":
# np.percentile values only comparable to linear interpolation
tm.assert_series_equal(result, expected)
else:
tm.assert_index_equal(result.index, expected.index)
request.node.add_marker(
pytest.mark.xfail(
using_array_manager, reason="Name set incorrectly for arraymanager"
)
)
assert result.name == expected.name
result = df.quantile(
0.9, axis=1, numeric_only=True, interpolation=interpolation, method=method
)
expected = Series(
[np.percentile(df.loc[date], 90) for date in df.index],
index=df.index,
name=0.9,
)
if interpolation == "linear":
# np.percentile values only comparable to linear interpolation
tm.assert_series_equal(result, expected)
else:
tm.assert_index_equal(result.index, expected.index)
request.node.add_marker(
pytest.mark.xfail(
using_array_manager, reason="Name set incorrectly for arraymanager"
)
)
assert result.name == expected.name
def test_empty(self, interp_method):
interpolation, method = interp_method
q = DataFrame({"x": [], "y": []}).quantile(
0.1, axis=0, numeric_only=True, interpolation=interpolation, method=method
)
assert np.isnan(q["x"]) and np.isnan(q["y"])
def test_non_numeric_exclusion(self, interp_method, request, using_array_manager):
interpolation, method = interp_method
df = DataFrame({"col1": ["A", "A", "B", "B"], "col2": [1, 2, 3, 4]})
rs = df.quantile(
0.5, numeric_only=True, interpolation=interpolation, method=method
)
xp = df.median(numeric_only=True).rename(0.5)
if interpolation == "nearest":
xp = (xp + 0.5).astype(np.int64)
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_series_equal(rs, xp)
def test_axis(self, interp_method, request, using_array_manager):
# axis
interpolation, method = interp_method
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
result = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5)
if interpolation == "nearest":
expected = expected.astype(np.int64)
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_series_equal(result, expected)
result = df.quantile(
[0.5, 0.75], axis=1, interpolation=interpolation, method=method
)
expected = DataFrame(
{1: [1.5, 1.75], 2: [2.5, 2.75], 3: [3.5, 3.75]}, index=[0.5, 0.75]
)
if interpolation == "nearest":
expected.iloc[0, :] -= 0.5
expected.iloc[1, :] += 0.25
expected = expected.astype(np.int64)
tm.assert_frame_equal(result, expected, check_index_type=True)
def test_axis_numeric_only_true(self, interp_method, request, using_array_manager):
# We may want to break API in the future to change this
# so that we exclude non-numeric along the same axis
# See GH #7312
interpolation, method = interp_method
df = DataFrame([[1, 2, 3], ["a", "b", 4]])
result = df.quantile(
0.5, axis=1, numeric_only=True, interpolation=interpolation, method=method
)
expected = Series([3.0, 4.0], index=[0, 1], name=0.5)
if interpolation == "nearest":
expected = expected.astype(np.int64)
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_series_equal(result, expected)
def test_quantile_date_range(self, interp_method, request, using_array_manager):
# GH 2460
interpolation, method = interp_method
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
ser = Series(dti)
df = DataFrame(ser)
result = df.quantile(
numeric_only=False, interpolation=interpolation, method=method
)
expected = Series(
["2016-01-02 00:00:00"], name=0.5, dtype="datetime64[ns, US/Pacific]"
)
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_series_equal(result, expected)
def test_quantile_axis_mixed(self, interp_method, request, using_array_manager):
# mixed on axis=1
interpolation, method = interp_method
df = DataFrame(
{
"A": [1, 2, 3],
"B": [2.0, 3.0, 4.0],
"C": pd.date_range("20130101", periods=3),
"D": ["foo", "bar", "baz"],
}
)
result = df.quantile(
0.5, axis=1, numeric_only=True, interpolation=interpolation, method=method
)
expected = Series([1.5, 2.5, 3.5], name=0.5)
if interpolation == "nearest":
expected -= 0.5
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_series_equal(result, expected)
# must raise
msg = "'<' not supported between instances of 'Timestamp' and 'float'"
with pytest.raises(TypeError, match=msg):
df.quantile(0.5, axis=1, numeric_only=False)
def test_quantile_axis_parameter(self, interp_method, request, using_array_manager):
# GH 9543/9544
interpolation, method = interp_method
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
result = df.quantile(0.5, axis=0, interpolation=interpolation, method=method)
expected = Series([2.0, 3.0], index=["A", "B"], name=0.5)
if interpolation == "nearest":
expected = expected.astype(np.int64)
tm.assert_series_equal(result, expected)
expected = df.quantile(
0.5, axis="index", interpolation=interpolation, method=method
)
if interpolation == "nearest":
expected = expected.astype(np.int64)
tm.assert_series_equal(result, expected)
result = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5)
if interpolation == "nearest":
expected = expected.astype(np.int64)
tm.assert_series_equal(result, expected)
result = df.quantile(
0.5, axis="columns", interpolation=interpolation, method=method
)
tm.assert_series_equal(result, expected)
msg = "No axis named -1 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.quantile(0.1, axis=-1, interpolation=interpolation, method=method)
msg = "No axis named column for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.quantile(0.1, axis="column")
def test_quantile_interpolation(self):
# see gh-10174
# interpolation method other than default linear
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
result = df.quantile(0.5, axis=1, interpolation="nearest")
expected = Series([1, 2, 3], index=[1, 2, 3], name=0.5)
tm.assert_series_equal(result, expected)
# cross-check interpolation=nearest results in original dtype
exp = np.percentile(
np.array([[1, 2, 3], [2, 3, 4]]),
0.5,
axis=0,
**{np_percentile_argname: "nearest"},
)
expected = Series(exp, index=[1, 2, 3], name=0.5, dtype="int64")
tm.assert_series_equal(result, expected)
# float
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": [2.0, 3.0, 4.0]}, index=[1, 2, 3])
result = df.quantile(0.5, axis=1, interpolation="nearest")
expected = Series([1.0, 2.0, 3.0], index=[1, 2, 3], name=0.5)
tm.assert_series_equal(result, expected)
exp = np.percentile(
np.array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]]),
0.5,
axis=0,
**{np_percentile_argname: "nearest"},
)
expected = Series(exp, index=[1, 2, 3], name=0.5, dtype="float64")
tm.assert_series_equal(result, expected)
# axis
result = df.quantile([0.5, 0.75], axis=1, interpolation="lower")
expected = DataFrame(
{1: [1.0, 1.0], 2: [2.0, 2.0], 3: [3.0, 3.0]}, index=[0.5, 0.75]
)
tm.assert_frame_equal(result, expected)
# test degenerate case
df = DataFrame({"x": [], "y": []})
q = df.quantile(0.1, axis=0, interpolation="higher")
assert np.isnan(q["x"]) and np.isnan(q["y"])
# multi
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
result = df.quantile([0.25, 0.5], interpolation="midpoint")
# https://github.com/numpy/numpy/issues/7163
expected = DataFrame(
[[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]],
index=[0.25, 0.5],
columns=["a", "b", "c"],
)
tm.assert_frame_equal(result, expected)
def test_quantile_interpolation_datetime(self, datetime_frame):
# see gh-10174
# interpolation = linear (default case)
df = datetime_frame
q = df.quantile(0.1, axis=0, numeric_only=True, interpolation="linear")
assert q["A"] == np.percentile(df["A"], 10)
def test_quantile_interpolation_int(self, int_frame):
# see gh-10174
df = int_frame
# interpolation = linear (default case)
q = df.quantile(0.1)
assert q["A"] == np.percentile(df["A"], 10)
# test with and without interpolation keyword
q1 = df.quantile(0.1, axis=0, interpolation="linear")
assert q1["A"] == np.percentile(df["A"], 10)
tm.assert_series_equal(q, q1)
def test_quantile_multi(self, interp_method, request, using_array_manager):
interpolation, method = interp_method
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
result = df.quantile([0.25, 0.5], interpolation=interpolation, method=method)
expected = DataFrame(
[[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]],
index=[0.25, 0.5],
columns=["a", "b", "c"],
)
if interpolation == "nearest":
expected = expected.astype(np.int64)
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_frame_equal(result, expected)
def test_quantile_multi_axis_1(self, interp_method, request, using_array_manager):
interpolation, method = interp_method
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
result = df.quantile(
[0.25, 0.5], axis=1, interpolation=interpolation, method=method
)
expected = DataFrame(
[[1.0, 2.0, 3.0]] * 2, index=[0.25, 0.5], columns=[0, 1, 2]
)
if interpolation == "nearest":
expected = expected.astype(np.int64)
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
tm.assert_frame_equal(result, expected)
def test_quantile_multi_empty(self, interp_method):
interpolation, method = interp_method
result = DataFrame({"x": [], "y": []}).quantile(
[0.1, 0.9], axis=0, interpolation=interpolation, method=method
)
expected = DataFrame(
{"x": [np.nan, np.nan], "y": [np.nan, np.nan]}, index=[0.1, 0.9]
)
tm.assert_frame_equal(result, expected)
def test_quantile_datetime(self):
df = DataFrame({"a": pd.to_datetime(["2010", "2011"]), "b": [0, 5]})
# exclude datetime
result = df.quantile(0.5, numeric_only=True)
expected = Series([2.5], index=["b"], name=0.5)
tm.assert_series_equal(result, expected)
# datetime
result = df.quantile(0.5, numeric_only=False)
expected = Series(
[Timestamp("2010-07-02 12:00:00"), 2.5], index=["a", "b"], name=0.5
)
tm.assert_series_equal(result, expected)
# datetime w/ multi
result = df.quantile([0.5], numeric_only=False)
expected = DataFrame(
[[Timestamp("2010-07-02 12:00:00"), 2.5]], index=[0.5], columns=["a", "b"]
)
tm.assert_frame_equal(result, expected)
# axis = 1
df["c"] = pd.to_datetime(["2011", "2012"])
result = df[["a", "c"]].quantile(0.5, axis=1, numeric_only=False)
expected = Series(
[Timestamp("2010-07-02 12:00:00"), Timestamp("2011-07-02 12:00:00")],
index=[0, 1],
name=0.5,
)
tm.assert_series_equal(result, expected)
result = df[["a", "c"]].quantile([0.5], axis=1, numeric_only=False)
expected = DataFrame(
[[Timestamp("2010-07-02 12:00:00"), Timestamp("2011-07-02 12:00:00")]],
index=[0.5],
columns=[0, 1],
)
tm.assert_frame_equal(result, expected)
# empty when numeric_only=True
result = df[["a", "c"]].quantile(0.5, numeric_only=True)
expected = Series([], index=[], dtype=np.float64, name=0.5)
tm.assert_series_equal(result, expected)
result = df[["a", "c"]].quantile([0.5], numeric_only=True)
expected = DataFrame(index=[0.5], columns=[])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"dtype",
[
"datetime64[ns]",
"datetime64[ns, US/Pacific]",
"timedelta64[ns]",
"Period[D]",
],
)
def test_quantile_dt64_empty(self, dtype, interp_method):
# GH#41544
interpolation, method = interp_method
df = DataFrame(columns=["a", "b"], dtype=dtype)
res = df.quantile(
0.5, axis=1, numeric_only=False, interpolation=interpolation, method=method
)
expected = Series([], index=[], name=0.5, dtype=dtype)
tm.assert_series_equal(res, expected)
# no columns in result, so no dtype preservation
res = df.quantile(
[0.5],
axis=1,
numeric_only=False,
interpolation=interpolation,
method=method,
)
expected = DataFrame(index=[0.5], columns=[])
tm.assert_frame_equal(res, expected)
@pytest.mark.parametrize("invalid", [-1, 2, [0.5, -1], [0.5, 2]])
def test_quantile_invalid(self, invalid, datetime_frame, interp_method):
msg = "percentiles should all be in the interval \\[0, 1\\]"
interpolation, method = interp_method
with pytest.raises(ValueError, match=msg):
datetime_frame.quantile(invalid, interpolation=interpolation, method=method)
def test_quantile_box(self, interp_method, request, using_array_manager):
interpolation, method = interp_method
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
df = DataFrame(
{
"A": [
Timestamp("2011-01-01"),
Timestamp("2011-01-02"),
Timestamp("2011-01-03"),
],
"B": [
Timestamp("2011-01-01", tz="US/Eastern"),
Timestamp("2011-01-02", tz="US/Eastern"),
Timestamp("2011-01-03", tz="US/Eastern"),
],
"C": [
pd.Timedelta("1 days"),
pd.Timedelta("2 days"),
pd.Timedelta("3 days"),
],
}
)
res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = Series(
[
Timestamp("2011-01-02"),
Timestamp("2011-01-02", tz="US/Eastern"),
pd.Timedelta("2 days"),
],
name=0.5,
index=["A", "B", "C"],
)
tm.assert_series_equal(res, exp)
res = df.quantile(
[0.5], numeric_only=False, interpolation=interpolation, method=method
)
exp = DataFrame(
[
[
Timestamp("2011-01-02"),
Timestamp("2011-01-02", tz="US/Eastern"),
pd.Timedelta("2 days"),
]
],
index=[0.5],
columns=["A", "B", "C"],
)
tm.assert_frame_equal(res, exp)
def test_quantile_box_nat(self):
# DatetimeLikeBlock may be consolidated and contain NaT in different loc
df = DataFrame(
{
"A": [
Timestamp("2011-01-01"),
pd.NaT,
Timestamp("2011-01-02"),
Timestamp("2011-01-03"),
],
"a": [
Timestamp("2011-01-01"),
Timestamp("2011-01-02"),
pd.NaT,
Timestamp("2011-01-03"),
],
"B": [
Timestamp("2011-01-01", tz="US/Eastern"),
pd.NaT,
Timestamp("2011-01-02", tz="US/Eastern"),
Timestamp("2011-01-03", tz="US/Eastern"),
],
"b": [
Timestamp("2011-01-01", tz="US/Eastern"),
Timestamp("2011-01-02", tz="US/Eastern"),
pd.NaT,
Timestamp("2011-01-03", tz="US/Eastern"),
],
"C": [
pd.Timedelta("1 days"),
pd.Timedelta("2 days"),
pd.Timedelta("3 days"),
pd.NaT,
],
"c": [
pd.NaT,
pd.Timedelta("1 days"),
pd.Timedelta("2 days"),
pd.Timedelta("3 days"),
],
},
columns=list("AaBbCc"),
)
res = df.quantile(0.5, numeric_only=False)
exp = Series(
[
Timestamp("2011-01-02"),
Timestamp("2011-01-02"),
Timestamp("2011-01-02", tz="US/Eastern"),
Timestamp("2011-01-02", tz="US/Eastern"),
pd.Timedelta("2 days"),
pd.Timedelta("2 days"),
],
name=0.5,
index=list("AaBbCc"),
)
tm.assert_series_equal(res, exp)
res = df.quantile([0.5], numeric_only=False)
exp = DataFrame(
[
[
Timestamp("2011-01-02"),
Timestamp("2011-01-02"),
Timestamp("2011-01-02", tz="US/Eastern"),
Timestamp("2011-01-02", tz="US/Eastern"),
pd.Timedelta("2 days"),
pd.Timedelta("2 days"),
]
],
index=[0.5],
columns=list("AaBbCc"),
)
tm.assert_frame_equal(res, exp)
def test_quantile_nan(self, interp_method, request, using_array_manager):
interpolation, method = interp_method
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
# GH 14357 - float block where some cols have missing values
df = DataFrame({"a": np.arange(1, 6.0), "b": np.arange(1, 6.0)})
df.iloc[-1, 1] = np.nan
res = df.quantile(0.5, interpolation=interpolation, method=method)
exp = Series(
[3.0, 2.5 if interpolation == "linear" else 3.0], index=["a", "b"], name=0.5
)
tm.assert_series_equal(res, exp)
res = df.quantile([0.5, 0.75], interpolation=interpolation, method=method)
exp = DataFrame(
{
"a": [3.0, 4.0],
"b": [2.5, 3.25] if interpolation == "linear" else [3.0, 4.0],
},
index=[0.5, 0.75],
)
tm.assert_frame_equal(res, exp)
res = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
exp = Series(np.arange(1.0, 6.0), name=0.5)
tm.assert_series_equal(res, exp)
res = df.quantile(
[0.5, 0.75], axis=1, interpolation=interpolation, method=method
)
exp = DataFrame([np.arange(1.0, 6.0)] * 2, index=[0.5, 0.75])
if interpolation == "nearest":
exp.iloc[1, -1] = np.nan
tm.assert_frame_equal(res, exp)
# full-nan column
df["b"] = np.nan
res = df.quantile(0.5, interpolation=interpolation, method=method)
exp = Series([3.0, np.nan], index=["a", "b"], name=0.5)
tm.assert_series_equal(res, exp)
res = df.quantile([0.5, 0.75], interpolation=interpolation, method=method)
exp = DataFrame({"a": [3.0, 4.0], "b": [np.nan, np.nan]}, index=[0.5, 0.75])
tm.assert_frame_equal(res, exp)
def test_quantile_nat(self, interp_method, request, using_array_manager):
interpolation, method = interp_method
if method == "table" and using_array_manager:
request.node.add_marker(
pytest.mark.xfail(reason="Axis name incorrectly set.")
)
# full NaT column
df = DataFrame({"a": [pd.NaT, pd.NaT, pd.NaT]})
res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = Series([pd.NaT], index=["a"], name=0.5)
tm.assert_series_equal(res, exp)
res = df.quantile(
[0.5], numeric_only=False, interpolation=interpolation, method=method
)
exp = DataFrame({"a": [pd.NaT]}, index=[0.5])
tm.assert_frame_equal(res, exp)
# mixed non-null / full null column
df = DataFrame(
{
"a": [
Timestamp("2012-01-01"),
Timestamp("2012-01-02"),
Timestamp("2012-01-03"),
],
"b": [pd.NaT, pd.NaT, pd.NaT],
}
)
res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = Series([Timestamp("2012-01-02"), pd.NaT], index=["a", "b"], name=0.5)
tm.assert_series_equal(res, exp)
res = df.quantile(
[0.5], numeric_only=False, interpolation=interpolation, method=method
)
exp = DataFrame(
[[Timestamp("2012-01-02"), pd.NaT]], index=[0.5], columns=["a", "b"]
)
tm.assert_frame_equal(res, exp)
def test_quantile_empty_no_rows_floats(self, interp_method):
interpolation, method = interp_method
df = DataFrame(columns=["a", "b"], dtype="float64")
res = df.quantile(0.5, interpolation=interpolation, method=method)
exp = Series([np.nan, np.nan], index=["a", "b"], name=0.5)
tm.assert_series_equal(res, exp)
res = df.quantile([0.5], interpolation=interpolation, method=method)
exp = DataFrame([[np.nan, np.nan]], columns=["a", "b"], index=[0.5])
tm.assert_frame_equal(res, exp)
res = df.quantile(0.5, axis=1, interpolation=interpolation, method=method)
exp = Series([], index=[], dtype="float64", name=0.5)
tm.assert_series_equal(res, exp)
res = df.quantile([0.5], axis=1, interpolation=interpolation, method=method)
exp = DataFrame(columns=[], index=[0.5])
tm.assert_frame_equal(res, exp)
def test_quantile_empty_no_rows_ints(self, interp_method):
interpolation, method = interp_method
df = DataFrame(columns=["a", "b"], dtype="int64")
res = df.quantile(0.5, interpolation=interpolation, method=method)
exp = Series([np.nan, np.nan], index=["a", "b"], name=0.5)
tm.assert_series_equal(res, exp)
def test_quantile_empty_no_rows_dt64(self, interp_method):
interpolation, method = interp_method
# datetimes
df = DataFrame(columns=["a", "b"], dtype="datetime64[ns]")
res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = Series(
[pd.NaT, pd.NaT], index=["a", "b"], dtype="datetime64[ns]", name=0.5
)
tm.assert_series_equal(res, exp)
# Mixed dt64/dt64tz
df["a"] = df["a"].dt.tz_localize("US/Central")
res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = exp.astype(object)
tm.assert_series_equal(res, exp)
# both dt64tz
df["b"] = df["b"].dt.tz_localize("US/Central")
res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = exp.astype(df["b"].dtype)
tm.assert_series_equal(res, exp)
def test_quantile_empty_no_columns(self, interp_method):
# GH#23925 _get_numeric_data may drop all columns
interpolation, method = interp_method
df = DataFrame(pd.date_range("1/1/18", periods=5))
df.columns.name = "captain tightpants"
result = df.quantile(
0.5, numeric_only=True, interpolation=interpolation, method=method
)
expected = Series([], index=[], name=0.5, dtype=np.float64)
expected.index.name = "captain tightpants"
tm.assert_series_equal(result, expected)
result = df.quantile(
[0.5], numeric_only=True, interpolation=interpolation, method=method
)
expected = DataFrame([], index=[0.5], columns=[])
expected.columns.name = "captain tightpants"
tm.assert_frame_equal(result, expected)
def test_quantile_item_cache(
self, using_array_manager, interp_method, using_copy_on_write
):
# previous behavior incorrect retained an invalid _item_cache entry
interpolation, method = interp_method
df = DataFrame(np.random.randn(4, 3), columns=["A", "B", "C"])
df["D"] = df["A"] * 2
ser = df["A"]
if not using_array_manager:
assert len(df._mgr.blocks) == 2
df.quantile(numeric_only=False, interpolation=interpolation, method=method)
if using_copy_on_write:
ser.iloc[0] = 99
assert df.iloc[0, 0] == df["A"][0]
assert df.iloc[0, 0] != 99
else:
ser.values[0] = 99
assert df.iloc[0, 0] == df["A"][0]
assert df.iloc[0, 0] == 99
def test_invalid_method(self):
with pytest.raises(ValueError, match="Invalid method: foo"):
DataFrame(range(1)).quantile(0.5, method="foo")
def test_table_invalid_interpolation(self):
with pytest.raises(ValueError, match="Invalid interpolation: foo"):
DataFrame(range(1)).quantile(0.5, method="table", interpolation="foo")
class TestQuantileExtensionDtype:
# TODO: tests for axis=1?
# TODO: empty case?
@pytest.fixture(
params=[
pytest.param(
pd.IntervalIndex.from_breaks(range(10)),
marks=pytest.mark.xfail(reason="raises when trying to add Intervals"),
),
pd.period_range("2016-01-01", periods=9, freq="D"),
pd.date_range("2016-01-01", periods=9, tz="US/Pacific"),
pd.timedelta_range("1 Day", periods=9),
pd.array(np.arange(9), dtype="Int64"),
pd.array(np.arange(9), dtype="Float64"),
],
ids=lambda x: str(x.dtype),
)
def index(self, request):
# NB: not actually an Index object
idx = request.param
idx.name = "A"
return idx
@pytest.fixture
def obj(self, index, frame_or_series):
# bc index is not always an Index (yet), we need to re-patch .name
obj = frame_or_series(index).copy()
if frame_or_series is Series:
obj.name = "A"
else:
obj.columns = ["A"]
return obj
def compute_quantile(self, obj, qs):
if isinstance(obj, Series):
result = obj.quantile(qs)
else:
result = obj.quantile(qs, numeric_only=False)
return result
def test_quantile_ea(self, request, obj, index):
# result should be invariant to shuffling
indexer = np.arange(len(index), dtype=np.intp)
np.random.shuffle(indexer)
obj = obj.iloc[indexer]
qs = [0.5, 0, 1]
result = self.compute_quantile(obj, qs)
if np_version_under1p21 and index.dtype == "timedelta64[ns]":
msg = "failed on Numpy 1.20.3; TypeError: data type 'Int64' not understood"
mark = pytest.mark.xfail(reason=msg, raises=TypeError)
request.node.add_marker(mark)
exp_dtype = index.dtype
if index.dtype == "Int64":
# match non-nullable casting behavior
exp_dtype = "Float64"
# expected here assumes len(index) == 9
expected = Series(
[index[4], index[0], index[-1]], dtype=exp_dtype, index=qs, name="A"
)
expected = type(obj)(expected)
tm.assert_equal(result, expected)
def test_quantile_ea_with_na(self, obj, index):
obj.iloc[0] = index._na_value
obj.iloc[-1] = index._na_value
# result should be invariant to shuffling
indexer = np.arange(len(index), dtype=np.intp)
np.random.shuffle(indexer)
obj = obj.iloc[indexer]
qs = [0.5, 0, 1]
result = self.compute_quantile(obj, qs)
# expected here assumes len(index) == 9
expected = Series(
[index[4], index[1], index[-2]], dtype=index.dtype, index=qs, name="A"
)
expected = type(obj)(expected)
tm.assert_equal(result, expected)
def test_quantile_ea_all_na(self, request, obj, index):
obj.iloc[:] = index._na_value
# Check dtypes were preserved; this was once a problem see GH#39763
assert np.all(obj.dtypes == index.dtype)
# result should be invariant to shuffling
indexer = np.arange(len(index), dtype=np.intp)
np.random.shuffle(indexer)
obj = obj.iloc[indexer]
qs = [0.5, 0, 1]
result = self.compute_quantile(obj, qs)
expected = index.take([-1, -1, -1], allow_fill=True, fill_value=index._na_value)
expected = Series(expected, index=qs, name="A")
expected = type(obj)(expected)
tm.assert_equal(result, expected)
def test_quantile_ea_scalar(self, request, obj, index):
# scalar qs
# result should be invariant to shuffling
indexer = np.arange(len(index), dtype=np.intp)
np.random.shuffle(indexer)
obj = obj.iloc[indexer]
qs = 0.5
result = self.compute_quantile(obj, qs)
if np_version_under1p21 and index.dtype == "timedelta64[ns]":
msg = "failed on Numpy 1.20.3; TypeError: data type 'Int64' not understood"
mark = pytest.mark.xfail(reason=msg, raises=TypeError)
request.node.add_marker(mark)
exp_dtype = index.dtype
if index.dtype == "Int64":
exp_dtype = "Float64"
expected = Series({"A": index[4]}, dtype=exp_dtype, name=0.5)
if isinstance(obj, Series):
expected = expected["A"]
assert result == expected
else:
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dtype, expected_data, expected_index, axis",
[
["float64", [], [], 1],
["int64", [], [], 1],
["float64", [np.nan, np.nan], ["a", "b"], 0],
["int64", [np.nan, np.nan], ["a", "b"], 0],
],
)
def test_empty_numeric(self, dtype, expected_data, expected_index, axis):
# GH 14564
df = DataFrame(columns=["a", "b"], dtype=dtype)
result = df.quantile(0.5, axis=axis)
expected = Series(
expected_data, name=0.5, index=Index(expected_index), dtype="float64"
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dtype, expected_data, expected_index, axis, expected_dtype",
[
["datetime64[ns]", [], [], 1, "datetime64[ns]"],
["datetime64[ns]", [pd.NaT, pd.NaT], ["a", "b"], 0, "datetime64[ns]"],
],
)
def test_empty_datelike(
self, dtype, expected_data, expected_index, axis, expected_dtype
):
# GH 14564
df = DataFrame(columns=["a", "b"], dtype=dtype)
result = df.quantile(0.5, axis=axis, numeric_only=False)
expected = Series(
expected_data, name=0.5, index=Index(expected_index), dtype=expected_dtype
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"expected_data, expected_index, axis",
[
[[np.nan, np.nan], range(2), 1],
[[], [], 0],
],
)
def test_datelike_numeric_only(self, expected_data, expected_index, axis):
# GH 14564
df = DataFrame(
{
"a": pd.to_datetime(["2010", "2011"]),
"b": [0, 5],
"c": pd.to_datetime(["2011", "2012"]),
}
)
result = df[["a", "c"]].quantile(0.5, axis=axis, numeric_only=True)
expected = Series(
expected_data, name=0.5, index=Index(expected_index), dtype=np.float64
)
tm.assert_series_equal(result, expected)