317 lines
10 KiB
Python
317 lines
10 KiB
Python
from functools import partial
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.api.types import is_extension_array_dtype
|
|
|
|
dtypes = [
|
|
"int64",
|
|
"Int64",
|
|
{"A": "int64", "B": "Int64"},
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_unary_unary(dtype):
|
|
# unary input, unary output
|
|
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
|
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
|
result = np.positive(df)
|
|
expected = pd.DataFrame(
|
|
np.positive(values), index=df.index, columns=df.columns
|
|
).astype(dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_unary_binary(request, dtype):
|
|
# unary input, binary output
|
|
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(
|
|
reason="Extension / mixed with multiple outputs not implemented."
|
|
)
|
|
)
|
|
|
|
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
|
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
|
result_pandas = np.modf(df)
|
|
assert isinstance(result_pandas, tuple)
|
|
assert len(result_pandas) == 2
|
|
expected_numpy = np.modf(values)
|
|
|
|
for result, b in zip(result_pandas, expected_numpy):
|
|
expected = pd.DataFrame(b, index=df.index, columns=df.columns)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_binary_input_dispatch_binop(dtype):
|
|
# binop ufuncs are dispatched to our dunder methods.
|
|
values = np.array([[-1, -1], [1, 1]], dtype="int64")
|
|
df = pd.DataFrame(values, columns=["A", "B"], index=["a", "b"]).astype(dtype=dtype)
|
|
result = np.add(df, df)
|
|
expected = pd.DataFrame(
|
|
np.add(values, values), index=df.index, columns=df.columns
|
|
).astype(dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"func,arg,expected",
|
|
[
|
|
(np.add, 1, [2, 3, 4, 5]),
|
|
(
|
|
partial(np.add, where=[[False, True], [True, False]]),
|
|
np.array([[1, 1], [1, 1]]),
|
|
[0, 3, 4, 0],
|
|
),
|
|
(np.power, np.array([[1, 1], [2, 2]]), [1, 2, 9, 16]),
|
|
(np.subtract, 2, [-1, 0, 1, 2]),
|
|
(
|
|
partial(np.negative, where=np.array([[False, True], [True, False]])),
|
|
None,
|
|
[0, -2, -3, 0],
|
|
),
|
|
],
|
|
)
|
|
def test_ufunc_passes_args(func, arg, expected):
|
|
# GH#40662
|
|
arr = np.array([[1, 2], [3, 4]])
|
|
df = pd.DataFrame(arr)
|
|
result_inplace = np.zeros_like(arr)
|
|
# 1-argument ufunc
|
|
if arg is None:
|
|
result = func(df, out=result_inplace)
|
|
else:
|
|
result = func(df, arg, out=result_inplace)
|
|
|
|
expected = np.array(expected).reshape(2, 2)
|
|
tm.assert_numpy_array_equal(result_inplace, expected)
|
|
|
|
expected = pd.DataFrame(expected)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype_a", dtypes)
|
|
@pytest.mark.parametrize("dtype_b", dtypes)
|
|
def test_binary_input_aligns_columns(request, dtype_a, dtype_b):
|
|
if (
|
|
is_extension_array_dtype(dtype_a)
|
|
or isinstance(dtype_a, dict)
|
|
or is_extension_array_dtype(dtype_b)
|
|
or isinstance(dtype_b, dict)
|
|
):
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(
|
|
reason="Extension / mixed with multiple inputs not implemented."
|
|
)
|
|
)
|
|
|
|
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}).astype(dtype_a)
|
|
|
|
if isinstance(dtype_a, dict) and isinstance(dtype_b, dict):
|
|
dtype_b["C"] = dtype_b.pop("B")
|
|
df2 = pd.DataFrame({"A": [1, 2], "C": [3, 4]}).astype(dtype_b)
|
|
# As of 2.0, align first before applying the ufunc
|
|
result = np.heaviside(df1, df2)
|
|
expected = np.heaviside(
|
|
np.array([[1, 3, np.nan], [2, 4, np.nan]]),
|
|
np.array([[1, np.nan, 3], [2, np.nan, 4]]),
|
|
)
|
|
expected = pd.DataFrame(expected, index=[0, 1], columns=["A", "B", "C"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.heaviside(df1, df2.values)
|
|
expected = pd.DataFrame([[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", dtypes)
|
|
def test_binary_input_aligns_index(request, dtype):
|
|
if is_extension_array_dtype(dtype) or isinstance(dtype, dict):
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(
|
|
reason="Extension / mixed with multiple inputs not implemented."
|
|
)
|
|
)
|
|
df1 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).astype(dtype)
|
|
df2 = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "c"]).astype(dtype)
|
|
result = np.heaviside(df1, df2)
|
|
expected = np.heaviside(
|
|
np.array([[1, 3], [3, 4], [np.nan, np.nan]]),
|
|
np.array([[1, 3], [np.nan, np.nan], [3, 4]]),
|
|
)
|
|
# TODO(FloatArray): this will be Float64Dtype.
|
|
expected = pd.DataFrame(expected, index=["a", "b", "c"], columns=["A", "B"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.heaviside(df1, df2.values)
|
|
expected = pd.DataFrame(
|
|
[[1.0, 1.0], [1.0, 1.0]], columns=["A", "B"], index=["a", "b"]
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_binary_frame_series_raises():
|
|
# We don't currently implement
|
|
df = pd.DataFrame({"A": [1, 2]})
|
|
with pytest.raises(NotImplementedError, match="logaddexp"):
|
|
np.logaddexp(df, df["A"])
|
|
|
|
with pytest.raises(NotImplementedError, match="logaddexp"):
|
|
np.logaddexp(df["A"], df)
|
|
|
|
|
|
def test_unary_accumulate_axis():
|
|
# https://github.com/pandas-dev/pandas/issues/39259
|
|
df = pd.DataFrame({"a": [1, 3, 2, 4]})
|
|
result = np.maximum.accumulate(df)
|
|
expected = pd.DataFrame({"a": [1, 3, 3, 4]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = pd.DataFrame({"a": [1, 3, 2, 4], "b": [0.1, 4.0, 3.0, 2.0]})
|
|
result = np.maximum.accumulate(df)
|
|
# in theory could preserve int dtype for default axis=0
|
|
expected = pd.DataFrame({"a": [1.0, 3.0, 3.0, 4.0], "b": [0.1, 4.0, 4.0, 4.0]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.maximum.accumulate(df, axis=0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.maximum.accumulate(df, axis=1)
|
|
expected = pd.DataFrame({"a": [1.0, 3.0, 2.0, 4.0], "b": [1.0, 4.0, 3.0, 4.0]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_frame_outer_disallowed():
|
|
df = pd.DataFrame({"A": [1, 2]})
|
|
with pytest.raises(NotImplementedError, match=""):
|
|
# deprecation enforced in 2.0
|
|
np.subtract.outer(df, df)
|
|
|
|
|
|
def test_alignment_deprecation_enforced():
|
|
# Enforced in 2.0
|
|
# https://github.com/pandas-dev/pandas/issues/39184
|
|
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
|
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
|
|
s1 = pd.Series([1, 2], index=["a", "b"])
|
|
s2 = pd.Series([1, 2], index=["b", "c"])
|
|
|
|
# binary dataframe / dataframe
|
|
expected = pd.DataFrame({"a": [2, 4, 6], "b": [8, 10, 12]})
|
|
|
|
with tm.assert_produces_warning(None):
|
|
# aligned -> no warning!
|
|
result = np.add(df1, df1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.add(df1, df2.values)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.add(df1, df2)
|
|
expected = pd.DataFrame({"a": [np.nan] * 3, "b": [5, 7, 9], "c": [np.nan] * 3})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.add(df1.values, df2)
|
|
expected = pd.DataFrame({"b": [2, 4, 6], "c": [8, 10, 12]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# binary dataframe / series
|
|
expected = pd.DataFrame({"a": [2, 3, 4], "b": [6, 7, 8]})
|
|
|
|
with tm.assert_produces_warning(None):
|
|
# aligned -> no warning!
|
|
result = np.add(df1, s1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = np.add(df1, s2.values)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
expected = pd.DataFrame(
|
|
{"a": [np.nan] * 3, "b": [5.0, 6.0, 7.0], "c": [np.nan] * 3}
|
|
)
|
|
result = np.add(df1, s2)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
msg = "Cannot apply ufunc <ufunc 'add'> to mixed DataFrame and Series inputs."
|
|
with pytest.raises(NotImplementedError, match=msg):
|
|
np.add(s2, df1)
|
|
|
|
|
|
@td.skip_if_no("numba")
|
|
def test_alignment_deprecation_many_inputs_enforced():
|
|
# Enforced in 2.0
|
|
# https://github.com/pandas-dev/pandas/issues/39184
|
|
# test that the deprecation also works with > 2 inputs -> using a numba
|
|
# written ufunc for this because numpy itself doesn't have such ufuncs
|
|
from numba import (
|
|
float64,
|
|
vectorize,
|
|
)
|
|
|
|
@vectorize([float64(float64, float64, float64)])
|
|
def my_ufunc(x, y, z):
|
|
return x + y + z
|
|
|
|
df1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
|
df2 = pd.DataFrame({"b": [1, 2, 3], "c": [4, 5, 6]})
|
|
df3 = pd.DataFrame({"a": [1, 2, 3], "c": [4, 5, 6]})
|
|
|
|
result = my_ufunc(df1, df2, df3)
|
|
expected = pd.DataFrame(np.full((3, 3), np.nan), columns=["a", "b", "c"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# all aligned -> no warning
|
|
with tm.assert_produces_warning(None):
|
|
result = my_ufunc(df1, df1, df1)
|
|
expected = pd.DataFrame([[3.0, 12.0], [6.0, 15.0], [9.0, 18.0]], columns=["a", "b"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# mixed frame / arrays
|
|
msg = (
|
|
r"operands could not be broadcast together with shapes \(3,3\) \(3,3\) \(3,2\)"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
my_ufunc(df1, df2, df3.values)
|
|
|
|
# single frame -> no warning
|
|
with tm.assert_produces_warning(None):
|
|
result = my_ufunc(df1, df2.values, df3.values)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# takes indices of first frame
|
|
msg = (
|
|
r"operands could not be broadcast together with shapes \(3,2\) \(3,3\) \(3,3\)"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
my_ufunc(df1.values, df2, df3)
|
|
|
|
|
|
def test_array_ufuncs_for_many_arguments():
|
|
# GH39853
|
|
def add3(x, y, z):
|
|
return x + y + z
|
|
|
|
ufunc = np.frompyfunc(add3, 3, 1)
|
|
df = pd.DataFrame([[1, 2], [3, 4]])
|
|
|
|
result = ufunc(df, df, 1)
|
|
expected = pd.DataFrame([[3, 5], [7, 9]], dtype=object)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
ser = pd.Series([1, 2])
|
|
msg = (
|
|
"Cannot apply ufunc <ufunc 'add3 (vectorized)'> "
|
|
"to mixed DataFrame and Series inputs."
|
|
)
|
|
with pytest.raises(NotImplementedError, match=re.escape(msg)):
|
|
ufunc(df, df, ser)
|