46 lines
1.3 KiB
Python
46 lines
1.3 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DatetimeIndex,
|
|
Index,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
dtlike_dtypes = [
|
|
np.dtype("timedelta64[ns]"),
|
|
np.dtype("datetime64[ns]"),
|
|
pd.DatetimeTZDtype("ns", "Asia/Tokyo"),
|
|
pd.PeriodDtype("ns"),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("ldtype", dtlike_dtypes)
|
|
@pytest.mark.parametrize("rdtype", dtlike_dtypes)
|
|
def test_get_indexer_non_unique_wrong_dtype(ldtype, rdtype):
|
|
vals = np.tile(3600 * 10**9 * np.arange(3), 2)
|
|
|
|
def construct(dtype):
|
|
if dtype is dtlike_dtypes[-1]:
|
|
# PeriodArray will try to cast ints to strings
|
|
return DatetimeIndex(vals).astype(dtype)
|
|
return Index(vals, dtype=dtype)
|
|
|
|
left = construct(ldtype)
|
|
right = construct(rdtype)
|
|
|
|
result = left.get_indexer_non_unique(right)
|
|
|
|
if ldtype is rdtype:
|
|
ex1 = np.array([0, 3, 1, 4, 2, 5] * 2, dtype=np.intp)
|
|
ex2 = np.array([], dtype=np.intp)
|
|
tm.assert_numpy_array_equal(result[0], ex1)
|
|
tm.assert_numpy_array_equal(result[1], ex2)
|
|
|
|
else:
|
|
no_matches = np.array([-1] * 6, dtype=np.intp)
|
|
missing = np.arange(6, dtype=np.intp)
|
|
tm.assert_numpy_array_equal(result[0], no_matches)
|
|
tm.assert_numpy_array_equal(result[1], missing)
|