861 lines
26 KiB
Python
861 lines
26 KiB
Python
from datetime import (
|
|
date,
|
|
datetime,
|
|
)
|
|
import itertools
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import pa_version_under7p0
|
|
|
|
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
def test_constructor_single_level():
|
|
result = MultiIndex(
|
|
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
|
|
)
|
|
assert isinstance(result, MultiIndex)
|
|
expected = Index(["foo", "bar", "baz", "qux"], name="first")
|
|
tm.assert_index_equal(result.levels[0], expected)
|
|
assert result.names == ["first"]
|
|
|
|
|
|
def test_constructor_no_levels():
|
|
msg = "non-zero number of levels/codes"
|
|
with pytest.raises(ValueError, match=msg):
|
|
MultiIndex(levels=[], codes=[])
|
|
|
|
msg = "Must pass both levels and codes"
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex(levels=[])
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex(codes=[])
|
|
|
|
|
|
def test_constructor_nonhashable_names():
|
|
# GH 20527
|
|
levels = [[1, 2], ["one", "two"]]
|
|
codes = [[0, 0, 1, 1], [0, 1, 0, 1]]
|
|
names = (["foo"], ["bar"])
|
|
msg = r"MultiIndex\.name must be a hashable type"
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex(levels=levels, codes=codes, names=names)
|
|
|
|
# With .rename()
|
|
mi = MultiIndex(
|
|
levels=[[1, 2], ["one", "two"]],
|
|
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
|
|
names=("foo", "bar"),
|
|
)
|
|
renamed = [["foor"], ["barr"]]
|
|
with pytest.raises(TypeError, match=msg):
|
|
mi.rename(names=renamed)
|
|
|
|
# With .set_names()
|
|
with pytest.raises(TypeError, match=msg):
|
|
mi.set_names(names=renamed)
|
|
|
|
|
|
def test_constructor_mismatched_codes_levels(idx):
|
|
codes = [np.array([1]), np.array([2]), np.array([3])]
|
|
levels = ["a"]
|
|
|
|
msg = "Length of levels and codes must be the same"
|
|
with pytest.raises(ValueError, match=msg):
|
|
MultiIndex(levels=levels, codes=codes)
|
|
|
|
length_error = (
|
|
r"On level 0, code max \(3\) >= length of level \(1\)\. "
|
|
"NOTE: this index is in an inconsistent state"
|
|
)
|
|
label_error = r"Unequal code lengths: \[4, 2\]"
|
|
code_value_error = r"On level 0, code value \(-2\) < -1"
|
|
|
|
# important to check that it's looking at the right thing.
|
|
with pytest.raises(ValueError, match=length_error):
|
|
MultiIndex(levels=[["a"], ["b"]], codes=[[0, 1, 2, 3], [0, 3, 4, 1]])
|
|
|
|
with pytest.raises(ValueError, match=label_error):
|
|
MultiIndex(levels=[["a"], ["b"]], codes=[[0, 0, 0, 0], [0, 0]])
|
|
|
|
# external API
|
|
with pytest.raises(ValueError, match=length_error):
|
|
idx.copy().set_levels([["a"], ["b"]])
|
|
|
|
with pytest.raises(ValueError, match=label_error):
|
|
idx.copy().set_codes([[0, 0, 0, 0], [0, 0]])
|
|
|
|
# test set_codes with verify_integrity=False
|
|
# the setting should not raise any value error
|
|
idx.copy().set_codes(codes=[[0, 0, 0, 0], [0, 0]], verify_integrity=False)
|
|
|
|
# code value smaller than -1
|
|
with pytest.raises(ValueError, match=code_value_error):
|
|
MultiIndex(levels=[["a"], ["b"]], codes=[[0, -2], [0, 0]])
|
|
|
|
|
|
def test_na_levels():
|
|
# GH26408
|
|
# test if codes are re-assigned value -1 for levels
|
|
# with missing values (NaN, NaT, None)
|
|
result = MultiIndex(
|
|
levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[0, -1, 1, 2, 3, 4]]
|
|
)
|
|
expected = MultiIndex(
|
|
levels=[[np.nan, None, pd.NaT, 128, 2]], codes=[[-1, -1, -1, -1, 3, 4]]
|
|
)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
result = MultiIndex(
|
|
levels=[[np.nan, "s", pd.NaT, 128, None]], codes=[[0, -1, 1, 2, 3, 4]]
|
|
)
|
|
expected = MultiIndex(
|
|
levels=[[np.nan, "s", pd.NaT, 128, None]], codes=[[-1, -1, 1, -1, 3, -1]]
|
|
)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# verify set_levels and set_codes
|
|
result = MultiIndex(
|
|
levels=[[1, 2, 3, 4, 5]], codes=[[0, -1, 1, 2, 3, 4]]
|
|
).set_levels([[np.nan, "s", pd.NaT, 128, None]])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
result = MultiIndex(
|
|
levels=[[np.nan, "s", pd.NaT, 128, None]], codes=[[1, 2, 2, 2, 2, 2]]
|
|
).set_codes([[0, -1, 1, 2, 3, 4]])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_copy_in_constructor():
|
|
levels = np.array(["a", "b", "c"])
|
|
codes = np.array([1, 1, 2, 0, 0, 1, 1])
|
|
val = codes[0]
|
|
mi = MultiIndex(levels=[levels, levels], codes=[codes, codes], copy=True)
|
|
assert mi.codes[0][0] == val
|
|
codes[0] = 15
|
|
assert mi.codes[0][0] == val
|
|
val = levels[0]
|
|
levels[0] = "PANDA"
|
|
assert mi.levels[0][0] == val
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# from_arrays
|
|
# ----------------------------------------------------------------------------
|
|
def test_from_arrays(idx):
|
|
arrays = [
|
|
np.asarray(lev).take(level_codes)
|
|
for lev, level_codes in zip(idx.levels, idx.codes)
|
|
]
|
|
|
|
# list of arrays as input
|
|
result = MultiIndex.from_arrays(arrays, names=idx.names)
|
|
tm.assert_index_equal(result, idx)
|
|
|
|
# infer correctly
|
|
result = MultiIndex.from_arrays([[pd.NaT, Timestamp("20130101")], ["a", "b"]])
|
|
assert result.levels[0].equals(Index([Timestamp("20130101")]))
|
|
assert result.levels[1].equals(Index(["a", "b"]))
|
|
|
|
|
|
def test_from_arrays_iterator(idx):
|
|
# GH 18434
|
|
arrays = [
|
|
np.asarray(lev).take(level_codes)
|
|
for lev, level_codes in zip(idx.levels, idx.codes)
|
|
]
|
|
|
|
# iterator as input
|
|
result = MultiIndex.from_arrays(iter(arrays), names=idx.names)
|
|
tm.assert_index_equal(result, idx)
|
|
|
|
# invalid iterator input
|
|
msg = "Input must be a list / sequence of array-likes."
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex.from_arrays(0)
|
|
|
|
|
|
def test_from_arrays_tuples(idx):
|
|
arrays = tuple(
|
|
tuple(np.asarray(lev).take(level_codes))
|
|
for lev, level_codes in zip(idx.levels, idx.codes)
|
|
)
|
|
|
|
# tuple of tuples as input
|
|
result = MultiIndex.from_arrays(arrays, names=idx.names)
|
|
tm.assert_index_equal(result, idx)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("idx1", "idx2"),
|
|
[
|
|
(
|
|
pd.period_range("2011-01-01", freq="D", periods=3),
|
|
pd.period_range("2015-01-01", freq="H", periods=3),
|
|
),
|
|
(
|
|
date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"),
|
|
date_range("2015-01-01 10:00", freq="H", periods=3, tz="Asia/Tokyo"),
|
|
),
|
|
(
|
|
pd.timedelta_range("1 days", freq="D", periods=3),
|
|
pd.timedelta_range("2 hours", freq="H", periods=3),
|
|
),
|
|
],
|
|
)
|
|
def test_from_arrays_index_series_period_datetimetz_and_timedelta(idx1, idx2):
|
|
result = MultiIndex.from_arrays([idx1, idx2])
|
|
tm.assert_index_equal(result.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result.get_level_values(1), idx2)
|
|
|
|
result2 = MultiIndex.from_arrays([Series(idx1), Series(idx2)])
|
|
tm.assert_index_equal(result2.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result2.get_level_values(1), idx2)
|
|
|
|
tm.assert_index_equal(result, result2)
|
|
|
|
|
|
def test_from_arrays_index_datetimelike_mixed():
|
|
idx1 = date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern")
|
|
idx2 = date_range("2015-01-01 10:00", freq="H", periods=3)
|
|
idx3 = pd.timedelta_range("1 days", freq="D", periods=3)
|
|
idx4 = pd.period_range("2011-01-01", freq="D", periods=3)
|
|
|
|
result = MultiIndex.from_arrays([idx1, idx2, idx3, idx4])
|
|
tm.assert_index_equal(result.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result.get_level_values(1), idx2)
|
|
tm.assert_index_equal(result.get_level_values(2), idx3)
|
|
tm.assert_index_equal(result.get_level_values(3), idx4)
|
|
|
|
result2 = MultiIndex.from_arrays(
|
|
[Series(idx1), Series(idx2), Series(idx3), Series(idx4)]
|
|
)
|
|
tm.assert_index_equal(result2.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result2.get_level_values(1), idx2)
|
|
tm.assert_index_equal(result2.get_level_values(2), idx3)
|
|
tm.assert_index_equal(result2.get_level_values(3), idx4)
|
|
|
|
tm.assert_index_equal(result, result2)
|
|
|
|
|
|
def test_from_arrays_index_series_categorical():
|
|
# GH13743
|
|
idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False)
|
|
idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True)
|
|
|
|
result = MultiIndex.from_arrays([idx1, idx2])
|
|
tm.assert_index_equal(result.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result.get_level_values(1), idx2)
|
|
|
|
result2 = MultiIndex.from_arrays([Series(idx1), Series(idx2)])
|
|
tm.assert_index_equal(result2.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result2.get_level_values(1), idx2)
|
|
|
|
result3 = MultiIndex.from_arrays([idx1.values, idx2.values])
|
|
tm.assert_index_equal(result3.get_level_values(0), idx1)
|
|
tm.assert_index_equal(result3.get_level_values(1), idx2)
|
|
|
|
|
|
def test_from_arrays_empty():
|
|
# 0 levels
|
|
msg = "Must pass non-zero number of levels/codes"
|
|
with pytest.raises(ValueError, match=msg):
|
|
MultiIndex.from_arrays(arrays=[])
|
|
|
|
# 1 level
|
|
result = MultiIndex.from_arrays(arrays=[[]], names=["A"])
|
|
assert isinstance(result, MultiIndex)
|
|
expected = Index([], name="A")
|
|
tm.assert_index_equal(result.levels[0], expected)
|
|
assert result.names == ["A"]
|
|
|
|
# N levels
|
|
for N in [2, 3]:
|
|
arrays = [[]] * N
|
|
names = list("ABC")[:N]
|
|
result = MultiIndex.from_arrays(arrays=arrays, names=names)
|
|
expected = MultiIndex(levels=[[]] * N, codes=[[]] * N, names=names)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"invalid_sequence_of_arrays",
|
|
[
|
|
1,
|
|
[1],
|
|
[1, 2],
|
|
[[1], 2],
|
|
[1, [2]],
|
|
"a",
|
|
["a"],
|
|
["a", "b"],
|
|
[["a"], "b"],
|
|
(1,),
|
|
(1, 2),
|
|
([1], 2),
|
|
(1, [2]),
|
|
"a",
|
|
("a",),
|
|
("a", "b"),
|
|
(["a"], "b"),
|
|
[(1,), 2],
|
|
[1, (2,)],
|
|
[("a",), "b"],
|
|
((1,), 2),
|
|
(1, (2,)),
|
|
(("a",), "b"),
|
|
],
|
|
)
|
|
def test_from_arrays_invalid_input(invalid_sequence_of_arrays):
|
|
msg = "Input must be a list / sequence of array-likes"
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex.from_arrays(arrays=invalid_sequence_of_arrays)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"idx1, idx2", [([1, 2, 3], ["a", "b"]), ([], ["a", "b"]), ([1, 2, 3], [])]
|
|
)
|
|
def test_from_arrays_different_lengths(idx1, idx2):
|
|
# see gh-13599
|
|
msg = "^all arrays must be same length$"
|
|
with pytest.raises(ValueError, match=msg):
|
|
MultiIndex.from_arrays([idx1, idx2])
|
|
|
|
|
|
def test_from_arrays_respects_none_names():
|
|
# GH27292
|
|
a = Series([1, 2, 3], name="foo")
|
|
b = Series(["a", "b", "c"], name="bar")
|
|
|
|
result = MultiIndex.from_arrays([a, b], names=None)
|
|
expected = MultiIndex(
|
|
levels=[[1, 2, 3], ["a", "b", "c"]], codes=[[0, 1, 2], [0, 1, 2]], names=None
|
|
)
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# from_tuples
|
|
# ----------------------------------------------------------------------------
|
|
def test_from_tuples():
|
|
msg = "Cannot infer number of levels from empty list"
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex.from_tuples([])
|
|
|
|
expected = MultiIndex(
|
|
levels=[[1, 3], [2, 4]], codes=[[0, 1], [0, 1]], names=["a", "b"]
|
|
)
|
|
|
|
# input tuples
|
|
result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=["a", "b"])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_from_tuples_iterator():
|
|
# GH 18434
|
|
# input iterator for tuples
|
|
expected = MultiIndex(
|
|
levels=[[1, 3], [2, 4]], codes=[[0, 1], [0, 1]], names=["a", "b"]
|
|
)
|
|
|
|
result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=["a", "b"])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# input non-iterables
|
|
msg = "Input must be a list / sequence of tuple-likes."
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex.from_tuples(0)
|
|
|
|
|
|
def test_from_tuples_empty():
|
|
# GH 16777
|
|
result = MultiIndex.from_tuples([], names=["a", "b"])
|
|
expected = MultiIndex.from_arrays(arrays=[[], []], names=["a", "b"])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_from_tuples_index_values(idx):
|
|
result = MultiIndex.from_tuples(idx)
|
|
assert (result.values == idx.values).all()
|
|
|
|
|
|
def test_tuples_with_name_string():
|
|
# GH 15110 and GH 14848
|
|
|
|
li = [(0, 0, 1), (0, 1, 0), (1, 0, 0)]
|
|
msg = "Names should be list-like for a MultiIndex"
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index(li, name="abc")
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index(li, name="a")
|
|
|
|
|
|
def test_from_tuples_with_tuple_label():
|
|
# GH 15457
|
|
expected = pd.DataFrame(
|
|
[[2, 1, 2], [4, (1, 2), 3]], columns=["a", "b", "c"]
|
|
).set_index(["a", "b"])
|
|
idx = MultiIndex.from_tuples([(2, 1), (4, (1, 2))], names=("a", "b"))
|
|
result = pd.DataFrame([2, 3], columns=["c"], index=idx)
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# from_product
|
|
# ----------------------------------------------------------------------------
|
|
def test_from_product_empty_zero_levels():
|
|
# 0 levels
|
|
msg = "Must pass non-zero number of levels/codes"
|
|
with pytest.raises(ValueError, match=msg):
|
|
MultiIndex.from_product([])
|
|
|
|
|
|
def test_from_product_empty_one_level():
|
|
result = MultiIndex.from_product([[]], names=["A"])
|
|
expected = Index([], name="A")
|
|
tm.assert_index_equal(result.levels[0], expected)
|
|
assert result.names == ["A"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"first, second", [([], []), (["foo", "bar", "baz"], []), ([], ["a", "b", "c"])]
|
|
)
|
|
def test_from_product_empty_two_levels(first, second):
|
|
names = ["A", "B"]
|
|
result = MultiIndex.from_product([first, second], names=names)
|
|
expected = MultiIndex(levels=[first, second], codes=[[], []], names=names)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("N", list(range(4)))
|
|
def test_from_product_empty_three_levels(N):
|
|
# GH12258
|
|
names = ["A", "B", "C"]
|
|
lvl2 = list(range(N))
|
|
result = MultiIndex.from_product([[], lvl2, []], names=names)
|
|
expected = MultiIndex(levels=[[], lvl2, []], codes=[[], [], []], names=names)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"invalid_input", [1, [1], [1, 2], [[1], 2], "a", ["a"], ["a", "b"], [["a"], "b"]]
|
|
)
|
|
def test_from_product_invalid_input(invalid_input):
|
|
msg = r"Input must be a list / sequence of iterables|Input must be list-like"
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex.from_product(iterables=invalid_input)
|
|
|
|
|
|
def test_from_product_datetimeindex():
|
|
dt_index = date_range("2000-01-01", periods=2)
|
|
mi = MultiIndex.from_product([[1, 2], dt_index])
|
|
etalon = construct_1d_object_array_from_listlike(
|
|
[
|
|
(1, Timestamp("2000-01-01")),
|
|
(1, Timestamp("2000-01-02")),
|
|
(2, Timestamp("2000-01-01")),
|
|
(2, Timestamp("2000-01-02")),
|
|
]
|
|
)
|
|
tm.assert_numpy_array_equal(mi.values, etalon)
|
|
|
|
|
|
def test_from_product_rangeindex():
|
|
# RangeIndex is preserved by factorize, so preserved in levels
|
|
rng = Index(range(5))
|
|
other = ["a", "b"]
|
|
mi = MultiIndex.from_product([rng, other])
|
|
tm.assert_index_equal(mi._levels[0], rng, exact=True)
|
|
|
|
|
|
@pytest.mark.parametrize("ordered", [False, True])
|
|
@pytest.mark.parametrize("f", [lambda x: x, lambda x: Series(x), lambda x: x.values])
|
|
def test_from_product_index_series_categorical(ordered, f):
|
|
# GH13743
|
|
first = ["foo", "bar"]
|
|
|
|
idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered)
|
|
expected = pd.CategoricalIndex(
|
|
list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered
|
|
)
|
|
|
|
result = MultiIndex.from_product([first, f(idx)])
|
|
tm.assert_index_equal(result.get_level_values(1), expected)
|
|
|
|
|
|
def test_from_product():
|
|
first = ["foo", "bar", "buz"]
|
|
second = ["a", "b", "c"]
|
|
names = ["first", "second"]
|
|
result = MultiIndex.from_product([first, second], names=names)
|
|
|
|
tuples = [
|
|
("foo", "a"),
|
|
("foo", "b"),
|
|
("foo", "c"),
|
|
("bar", "a"),
|
|
("bar", "b"),
|
|
("bar", "c"),
|
|
("buz", "a"),
|
|
("buz", "b"),
|
|
("buz", "c"),
|
|
]
|
|
expected = MultiIndex.from_tuples(tuples, names=names)
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_from_product_iterator():
|
|
# GH 18434
|
|
first = ["foo", "bar", "buz"]
|
|
second = ["a", "b", "c"]
|
|
names = ["first", "second"]
|
|
tuples = [
|
|
("foo", "a"),
|
|
("foo", "b"),
|
|
("foo", "c"),
|
|
("bar", "a"),
|
|
("bar", "b"),
|
|
("bar", "c"),
|
|
("buz", "a"),
|
|
("buz", "b"),
|
|
("buz", "c"),
|
|
]
|
|
expected = MultiIndex.from_tuples(tuples, names=names)
|
|
|
|
# iterator as input
|
|
result = MultiIndex.from_product(iter([first, second]), names=names)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# Invalid non-iterable input
|
|
msg = "Input must be a list / sequence of iterables."
|
|
with pytest.raises(TypeError, match=msg):
|
|
MultiIndex.from_product(0)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"a, b, expected_names",
|
|
[
|
|
(
|
|
Series([1, 2, 3], name="foo"),
|
|
Series(["a", "b"], name="bar"),
|
|
["foo", "bar"],
|
|
),
|
|
(Series([1, 2, 3], name="foo"), ["a", "b"], ["foo", None]),
|
|
([1, 2, 3], ["a", "b"], None),
|
|
],
|
|
)
|
|
def test_from_product_infer_names(a, b, expected_names):
|
|
# GH27292
|
|
result = MultiIndex.from_product([a, b])
|
|
expected = MultiIndex(
|
|
levels=[[1, 2, 3], ["a", "b"]],
|
|
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
|
|
names=expected_names,
|
|
)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_from_product_respects_none_names():
|
|
# GH27292
|
|
a = Series([1, 2, 3], name="foo")
|
|
b = Series(["a", "b"], name="bar")
|
|
|
|
result = MultiIndex.from_product([a, b], names=None)
|
|
expected = MultiIndex(
|
|
levels=[[1, 2, 3], ["a", "b"]],
|
|
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
|
|
names=None,
|
|
)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_from_product_readonly():
|
|
# GH#15286 passing read-only array to from_product
|
|
a = np.array(range(3))
|
|
b = ["a", "b"]
|
|
expected = MultiIndex.from_product([a, b])
|
|
|
|
a.setflags(write=False)
|
|
result = MultiIndex.from_product([a, b])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_create_index_existing_name(idx):
|
|
# GH11193, when an existing index is passed, and a new name is not
|
|
# specified, the new index should inherit the previous object name
|
|
index = idx
|
|
index.names = ["foo", "bar"]
|
|
result = Index(index)
|
|
expected = Index(
|
|
Index(
|
|
[
|
|
("foo", "one"),
|
|
("foo", "two"),
|
|
("bar", "one"),
|
|
("baz", "two"),
|
|
("qux", "one"),
|
|
("qux", "two"),
|
|
],
|
|
dtype="object",
|
|
)
|
|
)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
result = Index(index, name="A")
|
|
expected = Index(
|
|
Index(
|
|
[
|
|
("foo", "one"),
|
|
("foo", "two"),
|
|
("bar", "one"),
|
|
("baz", "two"),
|
|
("qux", "one"),
|
|
("qux", "two"),
|
|
],
|
|
dtype="object",
|
|
),
|
|
name="A",
|
|
)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# from_frame
|
|
# ----------------------------------------------------------------------------
|
|
def test_from_frame():
|
|
# GH 22420
|
|
df = pd.DataFrame(
|
|
[["a", "a"], ["a", "b"], ["b", "a"], ["b", "b"]], columns=["L1", "L2"]
|
|
)
|
|
expected = MultiIndex.from_tuples(
|
|
[("a", "a"), ("a", "b"), ("b", "a"), ("b", "b")], names=["L1", "L2"]
|
|
)
|
|
result = MultiIndex.from_frame(df)
|
|
tm.assert_index_equal(expected, result)
|
|
|
|
|
|
@pytest.mark.skipif(pa_version_under7p0, reason="minimum pyarrow not installed")
|
|
def test_from_frame_missing_values_multiIndex():
|
|
# GH 39984
|
|
import pyarrow as pa
|
|
|
|
df = pd.DataFrame(
|
|
{
|
|
"a": Series([1, 2, None], dtype="Int64"),
|
|
"b": pd.Float64Dtype().__from_arrow__(pa.array([0.2, np.nan, None])),
|
|
}
|
|
)
|
|
multi_indexed = MultiIndex.from_frame(df)
|
|
expected = MultiIndex.from_arrays(
|
|
[
|
|
Series([1, 2, None]).astype("Int64"),
|
|
pd.Float64Dtype().__from_arrow__(pa.array([0.2, np.nan, None])),
|
|
],
|
|
names=["a", "b"],
|
|
)
|
|
tm.assert_index_equal(multi_indexed, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"non_frame",
|
|
[
|
|
Series([1, 2, 3, 4]),
|
|
[1, 2, 3, 4],
|
|
[[1, 2], [3, 4], [5, 6]],
|
|
Index([1, 2, 3, 4]),
|
|
np.array([[1, 2], [3, 4], [5, 6]]),
|
|
27,
|
|
],
|
|
)
|
|
def test_from_frame_error(non_frame):
|
|
# GH 22420
|
|
with pytest.raises(TypeError, match="Input must be a DataFrame"):
|
|
MultiIndex.from_frame(non_frame)
|
|
|
|
|
|
def test_from_frame_dtype_fidelity():
|
|
# GH 22420
|
|
df = pd.DataFrame(
|
|
{
|
|
"dates": date_range("19910905", periods=6, tz="US/Eastern"),
|
|
"a": [1, 1, 1, 2, 2, 2],
|
|
"b": pd.Categorical(["a", "a", "b", "b", "c", "c"], ordered=True),
|
|
"c": ["x", "x", "y", "z", "x", "y"],
|
|
}
|
|
)
|
|
original_dtypes = df.dtypes.to_dict()
|
|
|
|
expected_mi = MultiIndex.from_arrays(
|
|
[
|
|
date_range("19910905", periods=6, tz="US/Eastern"),
|
|
[1, 1, 1, 2, 2, 2],
|
|
pd.Categorical(["a", "a", "b", "b", "c", "c"], ordered=True),
|
|
["x", "x", "y", "z", "x", "y"],
|
|
],
|
|
names=["dates", "a", "b", "c"],
|
|
)
|
|
mi = MultiIndex.from_frame(df)
|
|
mi_dtypes = {name: mi.levels[i].dtype for i, name in enumerate(mi.names)}
|
|
|
|
tm.assert_index_equal(expected_mi, mi)
|
|
assert original_dtypes == mi_dtypes
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"names_in,names_out", [(None, [("L1", "x"), ("L2", "y")]), (["x", "y"], ["x", "y"])]
|
|
)
|
|
def test_from_frame_valid_names(names_in, names_out):
|
|
# GH 22420
|
|
df = pd.DataFrame(
|
|
[["a", "a"], ["a", "b"], ["b", "a"], ["b", "b"]],
|
|
columns=MultiIndex.from_tuples([("L1", "x"), ("L2", "y")]),
|
|
)
|
|
mi = MultiIndex.from_frame(df, names=names_in)
|
|
assert mi.names == names_out
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"names,expected_error_msg",
|
|
[
|
|
("bad_input", "Names should be list-like for a MultiIndex"),
|
|
(["a", "b", "c"], "Length of names must match number of levels in MultiIndex"),
|
|
],
|
|
)
|
|
def test_from_frame_invalid_names(names, expected_error_msg):
|
|
# GH 22420
|
|
df = pd.DataFrame(
|
|
[["a", "a"], ["a", "b"], ["b", "a"], ["b", "b"]],
|
|
columns=MultiIndex.from_tuples([("L1", "x"), ("L2", "y")]),
|
|
)
|
|
with pytest.raises(ValueError, match=expected_error_msg):
|
|
MultiIndex.from_frame(df, names=names)
|
|
|
|
|
|
def test_index_equal_empty_iterable():
|
|
# #16844
|
|
a = MultiIndex(levels=[[], []], codes=[[], []], names=["a", "b"])
|
|
b = MultiIndex.from_arrays(arrays=[[], []], names=["a", "b"])
|
|
tm.assert_index_equal(a, b)
|
|
|
|
|
|
def test_raise_invalid_sortorder():
|
|
# Test that the MultiIndex constructor raise when a incorrect sortorder is given
|
|
# GH#28518
|
|
|
|
levels = [[0, 1], [0, 1, 2]]
|
|
|
|
# Correct sortorder
|
|
MultiIndex(
|
|
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], sortorder=2
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=r".* sortorder 2 with lexsort_depth 1.*"):
|
|
MultiIndex(
|
|
levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]], sortorder=2
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=r".* sortorder 1 with lexsort_depth 0.*"):
|
|
MultiIndex(
|
|
levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]], sortorder=1
|
|
)
|
|
|
|
|
|
def test_datetimeindex():
|
|
idx1 = pd.DatetimeIndex(
|
|
["2013-04-01 9:00", "2013-04-02 9:00", "2013-04-03 9:00"] * 2, tz="Asia/Tokyo"
|
|
)
|
|
idx2 = date_range("2010/01/01", periods=6, freq="M", tz="US/Eastern")
|
|
idx = MultiIndex.from_arrays([idx1, idx2])
|
|
|
|
expected1 = pd.DatetimeIndex(
|
|
["2013-04-01 9:00", "2013-04-02 9:00", "2013-04-03 9:00"], tz="Asia/Tokyo"
|
|
)
|
|
|
|
tm.assert_index_equal(idx.levels[0], expected1)
|
|
tm.assert_index_equal(idx.levels[1], idx2)
|
|
|
|
# from datetime combos
|
|
# GH 7888
|
|
date1 = np.datetime64("today")
|
|
date2 = datetime.today()
|
|
date3 = Timestamp.today()
|
|
|
|
for d1, d2 in itertools.product([date1, date2, date3], [date1, date2, date3]):
|
|
index = MultiIndex.from_product([[d1], [d2]])
|
|
assert isinstance(index.levels[0], pd.DatetimeIndex)
|
|
assert isinstance(index.levels[1], pd.DatetimeIndex)
|
|
|
|
# but NOT date objects, matching Index behavior
|
|
date4 = date.today()
|
|
index = MultiIndex.from_product([[date4], [date2]])
|
|
assert not isinstance(index.levels[0], pd.DatetimeIndex)
|
|
assert isinstance(index.levels[1], pd.DatetimeIndex)
|
|
|
|
|
|
def test_constructor_with_tz():
|
|
index = pd.DatetimeIndex(
|
|
["2013/01/01 09:00", "2013/01/02 09:00"], name="dt1", tz="US/Pacific"
|
|
)
|
|
columns = pd.DatetimeIndex(
|
|
["2014/01/01 09:00", "2014/01/02 09:00"], name="dt2", tz="Asia/Tokyo"
|
|
)
|
|
|
|
result = MultiIndex.from_arrays([index, columns])
|
|
|
|
assert result.names == ["dt1", "dt2"]
|
|
tm.assert_index_equal(result.levels[0], index)
|
|
tm.assert_index_equal(result.levels[1], columns)
|
|
|
|
result = MultiIndex.from_arrays([Series(index), Series(columns)])
|
|
|
|
assert result.names == ["dt1", "dt2"]
|
|
tm.assert_index_equal(result.levels[0], index)
|
|
tm.assert_index_equal(result.levels[1], columns)
|
|
|
|
|
|
def test_multiindex_inference_consistency():
|
|
# check that inference behavior matches the base class
|
|
|
|
v = date.today()
|
|
|
|
arr = [v, v]
|
|
|
|
idx = Index(arr)
|
|
assert idx.dtype == object
|
|
|
|
mi = MultiIndex.from_arrays([arr])
|
|
lev = mi.levels[0]
|
|
assert lev.dtype == object
|
|
|
|
mi = MultiIndex.from_product([arr])
|
|
lev = mi.levels[0]
|
|
assert lev.dtype == object
|
|
|
|
mi = MultiIndex.from_tuples([(x,) for x in arr])
|
|
lev = mi.levels[0]
|
|
assert lev.dtype == object
|
|
|
|
|
|
def test_dtype_representation():
|
|
# GH#46900
|
|
pmidx = MultiIndex.from_arrays([[1], ["a"]], names=[("a", "b"), ("c", "d")])
|
|
result = pmidx.dtypes
|
|
expected = Series(
|
|
["int64", "object"], index=MultiIndex.from_tuples([("a", "b"), ("c", "d")])
|
|
)
|
|
tm.assert_series_equal(result, expected)
|