Inzynierka/Lib/site-packages/pandas/tests/indexes/multi/test_reindex.py
2023-06-02 12:51:02 +02:00

172 lines
5.6 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
MultiIndex,
)
import pandas._testing as tm
def test_reindex(idx):
result, indexer = idx.reindex(list(idx[:4]))
assert isinstance(result, MultiIndex)
assert result.names == ["first", "second"]
assert [level.name for level in result.levels] == ["first", "second"]
result, indexer = idx.reindex(list(idx))
assert isinstance(result, MultiIndex)
assert indexer is None
assert result.names == ["first", "second"]
assert [level.name for level in result.levels] == ["first", "second"]
def test_reindex_level(idx):
index = Index(["one"])
target, indexer = idx.reindex(index, level="second")
target2, indexer2 = index.reindex(idx, level="second")
exp_index = idx.join(index, level="second", how="right")
exp_index2 = idx.join(index, level="second", how="left")
assert target.equals(exp_index)
exp_indexer = np.array([0, 2, 4])
tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False)
assert target2.equals(exp_index2)
exp_indexer2 = np.array([0, -1, 0, -1, 0, -1])
tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False)
with pytest.raises(TypeError, match="Fill method not supported"):
idx.reindex(idx, method="pad", level="second")
def test_reindex_preserves_names_when_target_is_list_or_ndarray(idx):
# GH6552
idx = idx.copy()
target = idx.copy()
idx.names = target.names = [None, None]
other_dtype = MultiIndex.from_product([[1, 2], [3, 4]])
# list & ndarray cases
assert idx.reindex([])[0].names == [None, None]
assert idx.reindex(np.array([]))[0].names == [None, None]
assert idx.reindex(target.tolist())[0].names == [None, None]
assert idx.reindex(target.values)[0].names == [None, None]
assert idx.reindex(other_dtype.tolist())[0].names == [None, None]
assert idx.reindex(other_dtype.values)[0].names == [None, None]
idx.names = ["foo", "bar"]
assert idx.reindex([])[0].names == ["foo", "bar"]
assert idx.reindex(np.array([]))[0].names == ["foo", "bar"]
assert idx.reindex(target.tolist())[0].names == ["foo", "bar"]
assert idx.reindex(target.values)[0].names == ["foo", "bar"]
assert idx.reindex(other_dtype.tolist())[0].names == ["foo", "bar"]
assert idx.reindex(other_dtype.values)[0].names == ["foo", "bar"]
def test_reindex_lvl_preserves_names_when_target_is_list_or_array():
# GH7774
idx = MultiIndex.from_product([[0, 1], ["a", "b"]], names=["foo", "bar"])
assert idx.reindex([], level=0)[0].names == ["foo", "bar"]
assert idx.reindex([], level=1)[0].names == ["foo", "bar"]
def test_reindex_lvl_preserves_type_if_target_is_empty_list_or_array():
# GH7774
idx = MultiIndex.from_product([[0, 1], ["a", "b"]])
assert idx.reindex([], level=0)[0].levels[0].dtype.type == np.int64
assert idx.reindex([], level=1)[0].levels[1].dtype.type == np.object_
# case with EA levels
cat = pd.Categorical(["foo", "bar"])
dti = pd.date_range("2016-01-01", periods=2, tz="US/Pacific")
mi = MultiIndex.from_product([cat, dti])
assert mi.reindex([], level=0)[0].levels[0].dtype == cat.dtype
assert mi.reindex([], level=1)[0].levels[1].dtype == dti.dtype
def test_reindex_base(idx):
expected = np.arange(idx.size, dtype=np.intp)
actual = idx.get_indexer(idx)
tm.assert_numpy_array_equal(expected, actual)
with pytest.raises(ValueError, match="Invalid fill method"):
idx.get_indexer(idx, method="invalid")
def test_reindex_non_unique():
idx = MultiIndex.from_tuples([(0, 0), (1, 1), (1, 1), (2, 2)])
a = pd.Series(np.arange(4), index=idx)
new_idx = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)])
msg = "cannot handle a non-unique multi-index!"
with pytest.raises(ValueError, match=msg):
a.reindex(new_idx)
@pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]])
def test_reindex_empty_with_level(values):
# GH41170
idx = MultiIndex.from_arrays(values)
result, result_indexer = idx.reindex(np.array(["b"]), level=0)
expected = MultiIndex(levels=[["b"], values[1]], codes=[[], []])
expected_indexer = np.array([], dtype=result_indexer.dtype)
tm.assert_index_equal(result, expected)
tm.assert_numpy_array_equal(result_indexer, expected_indexer)
def test_reindex_not_all_tuples():
keys = [("i", "i"), ("i", "j"), ("j", "i"), "j"]
mi = MultiIndex.from_tuples(keys[:-1])
idx = Index(keys)
res, indexer = mi.reindex(idx)
tm.assert_index_equal(res, idx)
expected = np.array([0, 1, 2, -1], dtype=np.intp)
tm.assert_numpy_array_equal(indexer, expected)
def test_reindex_limit_arg_with_multiindex():
# GH21247
idx = MultiIndex.from_tuples([(3, "A"), (4, "A"), (4, "B")])
df = pd.Series([0.02, 0.01, 0.012], index=idx)
new_idx = MultiIndex.from_tuples(
[
(3, "A"),
(3, "B"),
(4, "A"),
(4, "B"),
(4, "C"),
(5, "B"),
(5, "C"),
(6, "B"),
(6, "C"),
]
)
with pytest.raises(
ValueError,
match="limit argument only valid if doing pad, backfill or nearest reindexing",
):
df.reindex(new_idx, fill_value=0, limit=1)
def test_reindex_with_none_in_nested_multiindex():
# GH42883
index = MultiIndex.from_tuples([(("a", None), 1), (("b", None), 2)])
index2 = MultiIndex.from_tuples([(("b", None), 2), (("a", None), 1)])
df1_dtype = pd.DataFrame([1, 2], index=index)
df2_dtype = pd.DataFrame([2, 1], index=index2)
result = df1_dtype.reindex_like(df2_dtype)
expected = df2_dtype
tm.assert_frame_equal(result, expected)