401 lines
13 KiB
Python
401 lines
13 KiB
Python
"""
|
|
Tests for the Index constructor conducting inference.
|
|
"""
|
|
from datetime import (
|
|
datetime,
|
|
timedelta,
|
|
)
|
|
from decimal import Decimal
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
NA,
|
|
Categorical,
|
|
CategoricalIndex,
|
|
DatetimeIndex,
|
|
Index,
|
|
IntervalIndex,
|
|
MultiIndex,
|
|
NaT,
|
|
PeriodIndex,
|
|
Series,
|
|
TimedeltaIndex,
|
|
Timestamp,
|
|
array,
|
|
date_range,
|
|
period_range,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestIndexConstructorInference:
|
|
def test_object_all_bools(self):
|
|
# GH#49594 match Series behavior on ndarray[object] of all bools
|
|
arr = np.array([True, False], dtype=object)
|
|
res = Index(arr)
|
|
assert res.dtype == object
|
|
|
|
# since the point is matching Series behavior, let's double check
|
|
assert Series(arr).dtype == object
|
|
|
|
def test_object_all_complex(self):
|
|
# GH#49594 match Series behavior on ndarray[object] of all complex
|
|
arr = np.array([complex(1), complex(2)], dtype=object)
|
|
res = Index(arr)
|
|
assert res.dtype == object
|
|
|
|
# since the point is matching Series behavior, let's double check
|
|
assert Series(arr).dtype == object
|
|
|
|
@pytest.mark.parametrize("val", [NaT, None, np.nan, float("nan")])
|
|
def test_infer_nat(self, val):
|
|
# GH#49340 all NaT/None/nan and at least 1 NaT -> datetime64[ns],
|
|
# matching Series behavior
|
|
values = [NaT, val]
|
|
|
|
idx = Index(values)
|
|
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
|
|
|
|
idx = Index(values[::-1])
|
|
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
|
|
|
|
idx = Index(np.array(values, dtype=object))
|
|
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
|
|
|
|
idx = Index(np.array(values, dtype=object)[::-1])
|
|
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
|
|
|
|
@pytest.mark.parametrize("na_value", [None, np.nan])
|
|
@pytest.mark.parametrize("vtype", [list, tuple, iter])
|
|
def test_construction_list_tuples_nan(self, na_value, vtype):
|
|
# GH#18505 : valid tuples containing NaN
|
|
values = [(1, "two"), (3.0, na_value)]
|
|
result = Index(vtype(values))
|
|
expected = MultiIndex.from_tuples(values)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype",
|
|
[int, "int64", "int32", "int16", "int8", "uint64", "uint32", "uint16", "uint8"],
|
|
)
|
|
def test_constructor_int_dtype_float(self, dtype):
|
|
# GH#18400
|
|
expected = Index([0, 1, 2, 3], dtype=dtype)
|
|
result = Index([0.0, 1.0, 2.0, 3.0], dtype=dtype)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("cast_index", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"vals", [[True, False, True], np.array([True, False, True], dtype=bool)]
|
|
)
|
|
def test_constructor_dtypes_to_object(self, cast_index, vals):
|
|
if cast_index:
|
|
index = Index(vals, dtype=bool)
|
|
else:
|
|
index = Index(vals)
|
|
|
|
assert type(index) is Index
|
|
assert index.dtype == bool
|
|
|
|
def test_constructor_categorical_to_object(self):
|
|
# GH#32167 Categorical data and dtype=object should return object-dtype
|
|
ci = CategoricalIndex(range(5))
|
|
result = Index(ci, dtype=object)
|
|
assert not isinstance(result, CategoricalIndex)
|
|
|
|
def test_constructor_infer_periodindex(self):
|
|
xp = period_range("2012-1-1", freq="M", periods=3)
|
|
rs = Index(xp)
|
|
tm.assert_index_equal(rs, xp)
|
|
assert isinstance(rs, PeriodIndex)
|
|
|
|
def test_from_list_of_periods(self):
|
|
rng = period_range("1/1/2000", periods=20, freq="D")
|
|
periods = list(rng)
|
|
|
|
result = Index(periods)
|
|
assert isinstance(result, PeriodIndex)
|
|
|
|
@pytest.mark.parametrize("pos", [0, 1])
|
|
@pytest.mark.parametrize(
|
|
"klass,dtype,ctor",
|
|
[
|
|
(DatetimeIndex, "datetime64[ns]", np.datetime64("nat")),
|
|
(TimedeltaIndex, "timedelta64[ns]", np.timedelta64("nat")),
|
|
],
|
|
)
|
|
def test_constructor_infer_nat_dt_like(
|
|
self, pos, klass, dtype, ctor, nulls_fixture, request
|
|
):
|
|
if isinstance(nulls_fixture, Decimal):
|
|
# We dont cast these to datetime64/timedelta64
|
|
return
|
|
|
|
expected = klass([NaT, NaT])
|
|
assert expected.dtype == dtype
|
|
data = [ctor]
|
|
data.insert(pos, nulls_fixture)
|
|
|
|
warn = None
|
|
if nulls_fixture is NA:
|
|
expected = Index([NA, NaT])
|
|
mark = pytest.mark.xfail(reason="Broken with np.NaT ctor; see GH 31884")
|
|
request.node.add_marker(mark)
|
|
# GH#35942 numpy will emit a DeprecationWarning within the
|
|
# assert_index_equal calls. Since we can't do anything
|
|
# about it until GH#31884 is fixed, we suppress that warning.
|
|
warn = DeprecationWarning
|
|
|
|
result = Index(data)
|
|
|
|
with tm.assert_produces_warning(warn):
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
result = Index(np.array(data, dtype=object))
|
|
|
|
with tm.assert_produces_warning(warn):
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("swap_objs", [True, False])
|
|
def test_constructor_mixed_nat_objs_infers_object(self, swap_objs):
|
|
# mixed np.datetime64/timedelta64 nat results in object
|
|
data = [np.datetime64("nat"), np.timedelta64("nat")]
|
|
if swap_objs:
|
|
data = data[::-1]
|
|
|
|
expected = Index(data, dtype=object)
|
|
tm.assert_index_equal(Index(data), expected)
|
|
tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
|
|
|
|
@pytest.mark.parametrize("swap_objs", [True, False])
|
|
def test_constructor_datetime_and_datetime64(self, swap_objs):
|
|
data = [Timestamp(2021, 6, 8, 9, 42), np.datetime64("now")]
|
|
if swap_objs:
|
|
data = data[::-1]
|
|
expected = DatetimeIndex(data)
|
|
|
|
tm.assert_index_equal(Index(data), expected)
|
|
tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
|
|
|
|
|
|
class TestDtypeEnforced:
|
|
# check we don't silently ignore the dtype keyword
|
|
|
|
def test_constructor_object_dtype_with_ea_data(self, any_numeric_ea_dtype):
|
|
# GH#45206
|
|
arr = array([0], dtype=any_numeric_ea_dtype)
|
|
|
|
idx = Index(arr, dtype=object)
|
|
assert idx.dtype == object
|
|
|
|
@pytest.mark.parametrize("dtype", [object, "float64", "uint64", "category"])
|
|
def test_constructor_range_values_mismatched_dtype(self, dtype):
|
|
rng = Index(range(5))
|
|
|
|
result = Index(rng, dtype=dtype)
|
|
assert result.dtype == dtype
|
|
|
|
result = Index(range(5), dtype=dtype)
|
|
assert result.dtype == dtype
|
|
|
|
@pytest.mark.parametrize("dtype", [object, "float64", "uint64", "category"])
|
|
def test_constructor_categorical_values_mismatched_non_ea_dtype(self, dtype):
|
|
cat = Categorical([1, 2, 3])
|
|
|
|
result = Index(cat, dtype=dtype)
|
|
assert result.dtype == dtype
|
|
|
|
def test_constructor_categorical_values_mismatched_dtype(self):
|
|
dti = date_range("2016-01-01", periods=3)
|
|
cat = Categorical(dti)
|
|
result = Index(cat, dti.dtype)
|
|
tm.assert_index_equal(result, dti)
|
|
|
|
dti2 = dti.tz_localize("Asia/Tokyo")
|
|
cat2 = Categorical(dti2)
|
|
result = Index(cat2, dti2.dtype)
|
|
tm.assert_index_equal(result, dti2)
|
|
|
|
ii = IntervalIndex.from_breaks(range(5))
|
|
cat3 = Categorical(ii)
|
|
result = Index(cat3, dtype=ii.dtype)
|
|
tm.assert_index_equal(result, ii)
|
|
|
|
def test_constructor_ea_values_mismatched_categorical_dtype(self):
|
|
dti = date_range("2016-01-01", periods=3)
|
|
result = Index(dti, dtype="category")
|
|
expected = CategoricalIndex(dti)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
dti2 = date_range("2016-01-01", periods=3, tz="US/Pacific")
|
|
result = Index(dti2, dtype="category")
|
|
expected = CategoricalIndex(dti2)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_period_values_mismatched_dtype(self):
|
|
pi = period_range("2016-01-01", periods=3, freq="D")
|
|
result = Index(pi, dtype="category")
|
|
expected = CategoricalIndex(pi)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_timedelta64_values_mismatched_dtype(self):
|
|
# check we don't silently ignore the dtype keyword
|
|
tdi = timedelta_range("4 Days", periods=5)
|
|
result = Index(tdi, dtype="category")
|
|
expected = CategoricalIndex(tdi)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_interval_values_mismatched_dtype(self):
|
|
dti = date_range("2016-01-01", periods=3)
|
|
ii = IntervalIndex.from_breaks(dti)
|
|
result = Index(ii, dtype="category")
|
|
expected = CategoricalIndex(ii)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_datetime64_values_mismatched_period_dtype(self):
|
|
dti = date_range("2016-01-01", periods=3)
|
|
result = Index(dti, dtype="Period[D]")
|
|
expected = dti.to_period("D")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("dtype", ["int64", "uint64"])
|
|
def test_constructor_int_dtype_nan_raises(self, dtype):
|
|
# see GH#15187
|
|
data = [np.nan]
|
|
msg = "cannot convert"
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index(data, dtype=dtype)
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
[1, 2, 3],
|
|
np.array([1, 2, 3]),
|
|
np.array([1, 2, 3], dtype=int),
|
|
# below should coerce
|
|
[1.0, 2.0, 3.0],
|
|
np.array([1.0, 2.0, 3.0], dtype=float),
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_int(self, vals, any_int_numpy_dtype):
|
|
dtype = any_int_numpy_dtype
|
|
index = Index(vals, dtype=dtype)
|
|
assert index.dtype == dtype
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
[1, 2, 3],
|
|
[1.0, 2.0, 3.0],
|
|
np.array([1.0, 2.0, 3.0]),
|
|
np.array([1, 2, 3], dtype=int),
|
|
np.array([1.0, 2.0, 3.0], dtype=float),
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_float(self, vals, float_numpy_dtype):
|
|
dtype = float_numpy_dtype
|
|
index = Index(vals, dtype=dtype)
|
|
assert index.dtype == dtype
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
[1, 2, 3],
|
|
np.array([1, 2, 3], dtype=int),
|
|
np.array(["2011-01-01", "2011-01-02"], dtype="datetime64[ns]"),
|
|
[datetime(2011, 1, 1), datetime(2011, 1, 2)],
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_categorical(self, vals):
|
|
index = Index(vals, dtype="category")
|
|
assert isinstance(index, CategoricalIndex)
|
|
|
|
@pytest.mark.parametrize("cast_index", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
Index(np.array([np.datetime64("2011-01-01"), np.datetime64("2011-01-02")])),
|
|
Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]),
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_datetime(self, cast_index, vals):
|
|
if cast_index:
|
|
index = Index(vals, dtype=object)
|
|
assert isinstance(index, Index)
|
|
assert index.dtype == object
|
|
else:
|
|
index = Index(vals)
|
|
assert isinstance(index, DatetimeIndex)
|
|
|
|
@pytest.mark.parametrize("cast_index", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
np.array([np.timedelta64(1, "D"), np.timedelta64(1, "D")]),
|
|
[timedelta(1), timedelta(1)],
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_timedelta(self, cast_index, vals):
|
|
if cast_index:
|
|
index = Index(vals, dtype=object)
|
|
assert isinstance(index, Index)
|
|
assert index.dtype == object
|
|
else:
|
|
index = Index(vals)
|
|
assert isinstance(index, TimedeltaIndex)
|
|
|
|
|
|
class TestIndexConstructorUnwrapping:
|
|
# Test passing different arraylike values to pd.Index
|
|
|
|
@pytest.mark.parametrize("klass", [Index, DatetimeIndex])
|
|
def test_constructor_from_series_dt64(self, klass):
|
|
stamps = [Timestamp("20110101"), Timestamp("20120101"), Timestamp("20130101")]
|
|
expected = DatetimeIndex(stamps)
|
|
ser = Series(stamps)
|
|
result = klass(ser)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_no_pandas_array(self):
|
|
ser = Series([1, 2, 3])
|
|
result = Index(ser.array)
|
|
expected = Index([1, 2, 3])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"array",
|
|
[
|
|
np.arange(5),
|
|
np.array(["a", "b", "c"]),
|
|
date_range("2000-01-01", periods=3).values,
|
|
],
|
|
)
|
|
def test_constructor_ndarray_like(self, array):
|
|
# GH#5460#issuecomment-44474502
|
|
# it should be possible to convert any object that satisfies the numpy
|
|
# ndarray interface directly into an Index
|
|
class ArrayLike:
|
|
def __init__(self, array) -> None:
|
|
self.array = array
|
|
|
|
def __array__(self, dtype=None) -> np.ndarray:
|
|
return self.array
|
|
|
|
expected = Index(array)
|
|
result = Index(ArrayLike(array))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
class TestIndexConstructionErrors:
|
|
def test_constructor_overflow_int64(self):
|
|
# see GH#15832
|
|
msg = (
|
|
"The elements provided in the data cannot "
|
|
"all be casted to the dtype int64"
|
|
)
|
|
with pytest.raises(OverflowError, match=msg):
|
|
Index([np.iinfo(np.uint64).max - 1], dtype="int64")
|