425 lines
13 KiB
Python
425 lines
13 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Categorical,
|
|
DataFrame,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
def _assert_series_equal_both(a, b, **kwargs):
|
|
"""
|
|
Check that two Series equal.
|
|
|
|
This check is performed commutatively.
|
|
|
|
Parameters
|
|
----------
|
|
a : Series
|
|
The first Series to compare.
|
|
b : Series
|
|
The second Series to compare.
|
|
kwargs : dict
|
|
The arguments passed to `tm.assert_series_equal`.
|
|
"""
|
|
tm.assert_series_equal(a, b, **kwargs)
|
|
tm.assert_series_equal(b, a, **kwargs)
|
|
|
|
|
|
def _assert_not_series_equal(a, b, **kwargs):
|
|
"""
|
|
Check that two Series are not equal.
|
|
|
|
Parameters
|
|
----------
|
|
a : Series
|
|
The first Series to compare.
|
|
b : Series
|
|
The second Series to compare.
|
|
kwargs : dict
|
|
The arguments passed to `tm.assert_series_equal`.
|
|
"""
|
|
try:
|
|
tm.assert_series_equal(a, b, **kwargs)
|
|
msg = "The two Series were equal when they shouldn't have been"
|
|
|
|
pytest.fail(msg=msg)
|
|
except AssertionError:
|
|
pass
|
|
|
|
|
|
def _assert_not_series_equal_both(a, b, **kwargs):
|
|
"""
|
|
Check that two Series are not equal.
|
|
|
|
This check is performed commutatively.
|
|
|
|
Parameters
|
|
----------
|
|
a : Series
|
|
The first Series to compare.
|
|
b : Series
|
|
The second Series to compare.
|
|
kwargs : dict
|
|
The arguments passed to `tm.assert_series_equal`.
|
|
"""
|
|
_assert_not_series_equal(a, b, **kwargs)
|
|
_assert_not_series_equal(b, a, **kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize("data", [range(3), list("abc"), list("áàä")])
|
|
def test_series_equal(data):
|
|
_assert_series_equal_both(Series(data), Series(data))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"data1,data2",
|
|
[
|
|
(range(3), range(1, 4)),
|
|
(list("abc"), list("xyz")),
|
|
(list("áàä"), list("éèë")),
|
|
(list("áàä"), list(b"aaa")),
|
|
(range(3), range(4)),
|
|
],
|
|
)
|
|
def test_series_not_equal_value_mismatch(data1, data2):
|
|
_assert_not_series_equal_both(Series(data1), Series(data2))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"kwargs",
|
|
[
|
|
{"dtype": "float64"}, # dtype mismatch
|
|
{"index": [1, 2, 4]}, # index mismatch
|
|
{"name": "foo"}, # name mismatch
|
|
],
|
|
)
|
|
def test_series_not_equal_metadata_mismatch(kwargs):
|
|
data = range(3)
|
|
s1 = Series(data)
|
|
|
|
s2 = Series(data, **kwargs)
|
|
_assert_not_series_equal_both(s1, s2)
|
|
|
|
|
|
@pytest.mark.parametrize("data1,data2", [(0.12345, 0.12346), (0.1235, 0.1236)])
|
|
@pytest.mark.parametrize("dtype", ["float32", "float64", "Float32"])
|
|
@pytest.mark.parametrize("decimals", [0, 1, 2, 3, 5, 10])
|
|
def test_less_precise(data1, data2, dtype, decimals):
|
|
rtol = 10**-decimals
|
|
s1 = Series([data1], dtype=dtype)
|
|
s2 = Series([data2], dtype=dtype)
|
|
|
|
if decimals in (5, 10) or (decimals >= 3 and abs(data1 - data2) >= 0.0005):
|
|
msg = "Series values are different"
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, rtol=rtol)
|
|
else:
|
|
_assert_series_equal_both(s1, s2, rtol=rtol)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"s1,s2,msg",
|
|
[
|
|
# Index
|
|
(
|
|
Series(["l1", "l2"], index=[1, 2]),
|
|
Series(["l1", "l2"], index=[1.0, 2.0]),
|
|
"Series\\.index are different",
|
|
),
|
|
# MultiIndex
|
|
(
|
|
DataFrame.from_records(
|
|
{"a": [1, 2], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"]
|
|
).c,
|
|
DataFrame.from_records(
|
|
{"a": [1.0, 2.0], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"]
|
|
).c,
|
|
"MultiIndex level \\[0\\] are different",
|
|
),
|
|
],
|
|
)
|
|
def test_series_equal_index_dtype(s1, s2, msg, check_index_type):
|
|
kwargs = {"check_index_type": check_index_type}
|
|
|
|
if check_index_type:
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, **kwargs)
|
|
else:
|
|
tm.assert_series_equal(s1, s2, **kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize("check_like", [True, False])
|
|
def test_series_equal_order_mismatch(check_like):
|
|
s1 = Series([1, 2, 3], index=["a", "b", "c"])
|
|
s2 = Series([3, 2, 1], index=["c", "b", "a"])
|
|
|
|
if not check_like: # Do not ignore index ordering.
|
|
with pytest.raises(AssertionError, match="Series.index are different"):
|
|
tm.assert_series_equal(s1, s2, check_like=check_like)
|
|
else:
|
|
_assert_series_equal_both(s1, s2, check_like=check_like)
|
|
|
|
|
|
@pytest.mark.parametrize("check_index", [True, False])
|
|
def test_series_equal_index_mismatch(check_index):
|
|
s1 = Series([1, 2, 3], index=["a", "b", "c"])
|
|
s2 = Series([1, 2, 3], index=["c", "b", "a"])
|
|
|
|
if check_index: # Do not ignore index.
|
|
with pytest.raises(AssertionError, match="Series.index are different"):
|
|
tm.assert_series_equal(s1, s2, check_index=check_index)
|
|
else:
|
|
_assert_series_equal_both(s1, s2, check_index=check_index)
|
|
|
|
|
|
def test_series_invalid_param_combination():
|
|
left = Series(dtype=object)
|
|
right = Series(dtype=object)
|
|
with pytest.raises(
|
|
ValueError, match="check_like must be False if check_index is False"
|
|
):
|
|
tm.assert_series_equal(left, right, check_index=False, check_like=True)
|
|
|
|
|
|
def test_series_equal_length_mismatch(rtol):
|
|
msg = """Series are different
|
|
|
|
Series length are different
|
|
\\[left\\]: 3, RangeIndex\\(start=0, stop=3, step=1\\)
|
|
\\[right\\]: 4, RangeIndex\\(start=0, stop=4, step=1\\)"""
|
|
|
|
s1 = Series([1, 2, 3])
|
|
s2 = Series([1, 2, 3, 4])
|
|
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, rtol=rtol)
|
|
|
|
|
|
def test_series_equal_numeric_values_mismatch(rtol):
|
|
msg = """Series are different
|
|
|
|
Series values are different \\(33\\.33333 %\\)
|
|
\\[index\\]: \\[0, 1, 2\\]
|
|
\\[left\\]: \\[1, 2, 3\\]
|
|
\\[right\\]: \\[1, 2, 4\\]"""
|
|
|
|
s1 = Series([1, 2, 3])
|
|
s2 = Series([1, 2, 4])
|
|
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, rtol=rtol)
|
|
|
|
|
|
def test_series_equal_categorical_values_mismatch(rtol):
|
|
msg = """Series are different
|
|
|
|
Series values are different \\(66\\.66667 %\\)
|
|
\\[index\\]: \\[0, 1, 2\\]
|
|
\\[left\\]: \\['a', 'b', 'c'\\]
|
|
Categories \\(3, object\\): \\['a', 'b', 'c'\\]
|
|
\\[right\\]: \\['a', 'c', 'b'\\]
|
|
Categories \\(3, object\\): \\['a', 'b', 'c'\\]"""
|
|
|
|
s1 = Series(Categorical(["a", "b", "c"]))
|
|
s2 = Series(Categorical(["a", "c", "b"]))
|
|
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, rtol=rtol)
|
|
|
|
|
|
def test_series_equal_datetime_values_mismatch(rtol):
|
|
msg = """Series are different
|
|
|
|
Series values are different \\(100.0 %\\)
|
|
\\[index\\]: \\[0, 1, 2\\]
|
|
\\[left\\]: \\[1514764800000000000, 1514851200000000000, 1514937600000000000\\]
|
|
\\[right\\]: \\[1549065600000000000, 1549152000000000000, 1549238400000000000\\]"""
|
|
|
|
s1 = Series(pd.date_range("2018-01-01", periods=3, freq="D"))
|
|
s2 = Series(pd.date_range("2019-02-02", periods=3, freq="D"))
|
|
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, rtol=rtol)
|
|
|
|
|
|
def test_series_equal_categorical_mismatch(check_categorical):
|
|
msg = """Attributes of Series are different
|
|
|
|
Attribute "dtype" are different
|
|
\\[left\\]: CategoricalDtype\\(categories=\\['a', 'b'\\], ordered=False\\)
|
|
\\[right\\]: CategoricalDtype\\(categories=\\['a', 'b', 'c'\\], \
|
|
ordered=False\\)"""
|
|
|
|
s1 = Series(Categorical(["a", "b"]))
|
|
s2 = Series(Categorical(["a", "b"], categories=list("abc")))
|
|
|
|
if check_categorical:
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s2, check_categorical=check_categorical)
|
|
else:
|
|
_assert_series_equal_both(s1, s2, check_categorical=check_categorical)
|
|
|
|
|
|
def test_assert_series_equal_extension_dtype_mismatch():
|
|
# https://github.com/pandas-dev/pandas/issues/32747
|
|
left = Series(pd.array([1, 2, 3], dtype="Int64"))
|
|
right = left.astype(int)
|
|
|
|
msg = """Attributes of Series are different
|
|
|
|
Attribute "dtype" are different
|
|
\\[left\\]: Int64
|
|
\\[right\\]: int[32|64]"""
|
|
|
|
tm.assert_series_equal(left, right, check_dtype=False)
|
|
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(left, right, check_dtype=True)
|
|
|
|
|
|
def test_assert_series_equal_interval_dtype_mismatch():
|
|
# https://github.com/pandas-dev/pandas/issues/32747
|
|
left = Series([pd.Interval(0, 1)], dtype="interval")
|
|
right = left.astype(object)
|
|
|
|
msg = """Attributes of Series are different
|
|
|
|
Attribute "dtype" are different
|
|
\\[left\\]: interval\\[int64, right\\]
|
|
\\[right\\]: object"""
|
|
|
|
tm.assert_series_equal(left, right, check_dtype=False)
|
|
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(left, right, check_dtype=True)
|
|
|
|
|
|
def test_series_equal_series_type():
|
|
class MySeries(Series):
|
|
pass
|
|
|
|
s1 = Series([1, 2])
|
|
s2 = Series([1, 2])
|
|
s3 = MySeries([1, 2])
|
|
|
|
tm.assert_series_equal(s1, s2, check_series_type=False)
|
|
tm.assert_series_equal(s1, s2, check_series_type=True)
|
|
|
|
tm.assert_series_equal(s1, s3, check_series_type=False)
|
|
tm.assert_series_equal(s3, s1, check_series_type=False)
|
|
|
|
with pytest.raises(AssertionError, match="Series classes are different"):
|
|
tm.assert_series_equal(s1, s3, check_series_type=True)
|
|
|
|
with pytest.raises(AssertionError, match="Series classes are different"):
|
|
tm.assert_series_equal(s3, s1, check_series_type=True)
|
|
|
|
|
|
def test_series_equal_exact_for_nonnumeric():
|
|
# https://github.com/pandas-dev/pandas/issues/35446
|
|
s1 = Series(["a", "b"])
|
|
s2 = Series(["a", "b"])
|
|
s3 = Series(["b", "a"])
|
|
|
|
tm.assert_series_equal(s1, s2, check_exact=True)
|
|
tm.assert_series_equal(s2, s1, check_exact=True)
|
|
|
|
msg = """Series are different
|
|
|
|
Series values are different \\(100\\.0 %\\)
|
|
\\[index\\]: \\[0, 1\\]
|
|
\\[left\\]: \\[a, b\\]
|
|
\\[right\\]: \\[b, a\\]"""
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s1, s3, check_exact=True)
|
|
|
|
msg = """Series are different
|
|
|
|
Series values are different \\(100\\.0 %\\)
|
|
\\[index\\]: \\[0, 1\\]
|
|
\\[left\\]: \\[b, a\\]
|
|
\\[right\\]: \\[a, b\\]"""
|
|
with pytest.raises(AssertionError, match=msg):
|
|
tm.assert_series_equal(s3, s1, check_exact=True)
|
|
|
|
|
|
@pytest.mark.parametrize("right_dtype", ["Int32", "int64"])
|
|
def test_assert_series_equal_ignore_extension_dtype_mismatch(right_dtype):
|
|
# https://github.com/pandas-dev/pandas/issues/35715
|
|
left = Series([1, 2, 3], dtype="Int64")
|
|
right = Series([1, 2, 3], dtype=right_dtype)
|
|
tm.assert_series_equal(left, right, check_dtype=False)
|
|
|
|
|
|
def test_allows_duplicate_labels():
|
|
left = Series([1])
|
|
right = Series([1]).set_flags(allows_duplicate_labels=False)
|
|
tm.assert_series_equal(left, left)
|
|
tm.assert_series_equal(right, right)
|
|
tm.assert_series_equal(left, right, check_flags=False)
|
|
tm.assert_series_equal(right, left, check_flags=False)
|
|
|
|
with pytest.raises(AssertionError, match="<Flags"):
|
|
tm.assert_series_equal(left, right)
|
|
|
|
with pytest.raises(AssertionError, match="<Flags"):
|
|
tm.assert_series_equal(left, right)
|
|
|
|
|
|
def test_assert_series_equal_identical_na(nulls_fixture):
|
|
ser = Series([nulls_fixture])
|
|
|
|
tm.assert_series_equal(ser, ser.copy())
|
|
|
|
# while we're here do Index too
|
|
idx = pd.Index(ser)
|
|
tm.assert_index_equal(idx, idx.copy(deep=True))
|
|
|
|
|
|
def test_identical_nested_series_is_equal():
|
|
# GH#22400
|
|
x = Series(
|
|
[
|
|
0,
|
|
0.0131142231938,
|
|
1.77774652865e-05,
|
|
np.array([0.4722720840328748, 0.4216929783681722]),
|
|
]
|
|
)
|
|
y = Series(
|
|
[
|
|
0,
|
|
0.0131142231938,
|
|
1.77774652865e-05,
|
|
np.array([0.4722720840328748, 0.4216929783681722]),
|
|
]
|
|
)
|
|
# These two arrays should be equal, nesting could cause issue
|
|
|
|
tm.assert_series_equal(x, x)
|
|
tm.assert_series_equal(x, x, check_exact=True)
|
|
tm.assert_series_equal(x, y)
|
|
tm.assert_series_equal(x, y, check_exact=True)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["datetime64", "timedelta64"])
|
|
def test_check_dtype_false_different_reso(dtype):
|
|
# GH 52449
|
|
ser_s = Series([1000213, 2131232, 21312331]).astype(f"{dtype}[s]")
|
|
ser_ms = ser_s.astype(f"{dtype}[ms]")
|
|
with pytest.raises(AssertionError, match="Attributes of Series are different"):
|
|
tm.assert_series_equal(ser_s, ser_ms)
|
|
tm.assert_series_equal(ser_ms, ser_s, check_dtype=False)
|
|
|
|
ser_ms -= Series([1, 1, 1]).astype(f"{dtype}[ms]")
|
|
|
|
with pytest.raises(AssertionError, match="Series are different"):
|
|
tm.assert_series_equal(ser_s, ser_ms)
|
|
|
|
with pytest.raises(AssertionError, match="Series are different"):
|
|
tm.assert_series_equal(ser_s, ser_ms, check_dtype=False)
|