235 lines
7.5 KiB
Python
235 lines
7.5 KiB
Python
from functools import partial
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
concat,
|
|
isna,
|
|
notna,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
from pandas.tseries import offsets
|
|
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]])
|
|
def test_series(series, sp_func, roll_func):
|
|
import scipy.stats
|
|
|
|
compare_func = partial(getattr(scipy.stats, sp_func), bias=False)
|
|
result = getattr(series.rolling(50), roll_func)()
|
|
assert isinstance(result, Series)
|
|
tm.assert_almost_equal(result.iloc[-1], compare_func(series[-50:]))
|
|
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]])
|
|
def test_frame(raw, frame, sp_func, roll_func):
|
|
import scipy.stats
|
|
|
|
compare_func = partial(getattr(scipy.stats, sp_func), bias=False)
|
|
result = getattr(frame.rolling(50), roll_func)()
|
|
assert isinstance(result, DataFrame)
|
|
tm.assert_series_equal(
|
|
result.iloc[-1, :],
|
|
frame.iloc[-50:, :].apply(compare_func, axis=0, raw=raw),
|
|
check_names=False,
|
|
)
|
|
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]])
|
|
def test_time_rule_series(series, sp_func, roll_func):
|
|
import scipy.stats
|
|
|
|
compare_func = partial(getattr(scipy.stats, sp_func), bias=False)
|
|
win = 25
|
|
ser = series[::2].resample("B").mean()
|
|
series_result = getattr(ser.rolling(window=win, min_periods=10), roll_func)()
|
|
last_date = series_result.index[-1]
|
|
prev_date = last_date - 24 * offsets.BDay()
|
|
|
|
trunc_series = series[::2].truncate(prev_date, last_date)
|
|
tm.assert_almost_equal(series_result[-1], compare_func(trunc_series))
|
|
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]])
|
|
def test_time_rule_frame(raw, frame, sp_func, roll_func):
|
|
import scipy.stats
|
|
|
|
compare_func = partial(getattr(scipy.stats, sp_func), bias=False)
|
|
win = 25
|
|
frm = frame[::2].resample("B").mean()
|
|
frame_result = getattr(frm.rolling(window=win, min_periods=10), roll_func)()
|
|
last_date = frame_result.index[-1]
|
|
prev_date = last_date - 24 * offsets.BDay()
|
|
|
|
trunc_frame = frame[::2].truncate(prev_date, last_date)
|
|
tm.assert_series_equal(
|
|
frame_result.xs(last_date),
|
|
trunc_frame.apply(compare_func, raw=raw),
|
|
check_names=False,
|
|
)
|
|
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]])
|
|
def test_nans(sp_func, roll_func):
|
|
import scipy.stats
|
|
|
|
compare_func = partial(getattr(scipy.stats, sp_func), bias=False)
|
|
obj = Series(np.random.randn(50))
|
|
obj[:10] = np.NaN
|
|
obj[-10:] = np.NaN
|
|
|
|
result = getattr(obj.rolling(50, min_periods=30), roll_func)()
|
|
tm.assert_almost_equal(result.iloc[-1], compare_func(obj[10:-10]))
|
|
|
|
# min_periods is working correctly
|
|
result = getattr(obj.rolling(20, min_periods=15), roll_func)()
|
|
assert isna(result.iloc[23])
|
|
assert not isna(result.iloc[24])
|
|
|
|
assert not isna(result.iloc[-6])
|
|
assert isna(result.iloc[-5])
|
|
|
|
obj2 = Series(np.random.randn(20))
|
|
result = getattr(obj2.rolling(10, min_periods=5), roll_func)()
|
|
assert isna(result.iloc[3])
|
|
assert notna(result.iloc[4])
|
|
|
|
result0 = getattr(obj.rolling(20, min_periods=0), roll_func)()
|
|
result1 = getattr(obj.rolling(20, min_periods=1), roll_func)()
|
|
tm.assert_almost_equal(result0, result1)
|
|
|
|
|
|
@pytest.mark.parametrize("minp", [0, 99, 100])
|
|
@pytest.mark.parametrize("roll_func", ["kurt", "skew"])
|
|
def test_min_periods(series, minp, roll_func, step):
|
|
result = getattr(
|
|
series.rolling(len(series) + 1, min_periods=minp, step=step), roll_func
|
|
)()
|
|
expected = getattr(
|
|
series.rolling(len(series), min_periods=minp, step=step), roll_func
|
|
)()
|
|
nan_mask = isna(result)
|
|
tm.assert_series_equal(nan_mask, isna(expected))
|
|
|
|
nan_mask = ~nan_mask
|
|
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
|
|
|
|
|
|
@pytest.mark.parametrize("roll_func", ["kurt", "skew"])
|
|
def test_center(roll_func):
|
|
obj = Series(np.random.randn(50))
|
|
obj[:10] = np.NaN
|
|
obj[-10:] = np.NaN
|
|
|
|
result = getattr(obj.rolling(20, center=True), roll_func)()
|
|
expected = (
|
|
getattr(concat([obj, Series([np.NaN] * 9)]).rolling(20), roll_func)()
|
|
.iloc[9:]
|
|
.reset_index(drop=True)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("roll_func", ["kurt", "skew"])
|
|
def test_center_reindex_series(series, roll_func):
|
|
# shifter index
|
|
s = [f"x{x:d}" for x in range(12)]
|
|
|
|
series_xp = (
|
|
getattr(
|
|
series.reindex(list(series.index) + s).rolling(window=25),
|
|
roll_func,
|
|
)()
|
|
.shift(-12)
|
|
.reindex(series.index)
|
|
)
|
|
series_rs = getattr(series.rolling(window=25, center=True), roll_func)()
|
|
tm.assert_series_equal(series_xp, series_rs)
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("roll_func", ["kurt", "skew"])
|
|
def test_center_reindex_frame(frame, roll_func):
|
|
# shifter index
|
|
s = [f"x{x:d}" for x in range(12)]
|
|
|
|
frame_xp = (
|
|
getattr(
|
|
frame.reindex(list(frame.index) + s).rolling(window=25),
|
|
roll_func,
|
|
)()
|
|
.shift(-12)
|
|
.reindex(frame.index)
|
|
)
|
|
frame_rs = getattr(frame.rolling(window=25, center=True), roll_func)()
|
|
tm.assert_frame_equal(frame_xp, frame_rs)
|
|
|
|
|
|
def test_rolling_skew_edge_cases(step):
|
|
expected = Series([np.NaN] * 4 + [0.0])[::step]
|
|
# yields all NaN (0 variance)
|
|
d = Series([1] * 5)
|
|
x = d.rolling(window=5, step=step).skew()
|
|
# index 4 should be 0 as it contains 5 same obs
|
|
tm.assert_series_equal(expected, x)
|
|
|
|
expected = Series([np.NaN] * 5)[::step]
|
|
# yields all NaN (window too small)
|
|
d = Series(np.random.randn(5))
|
|
x = d.rolling(window=2, step=step).skew()
|
|
tm.assert_series_equal(expected, x)
|
|
|
|
# yields [NaN, NaN, NaN, 0.177994, 1.548824]
|
|
d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401])
|
|
expected = Series([np.NaN, np.NaN, np.NaN, 0.177994, 1.548824])[::step]
|
|
x = d.rolling(window=4, step=step).skew()
|
|
tm.assert_series_equal(expected, x)
|
|
|
|
|
|
def test_rolling_kurt_edge_cases(step):
|
|
expected = Series([np.NaN] * 4 + [-3.0])[::step]
|
|
|
|
# yields all NaN (0 variance)
|
|
d = Series([1] * 5)
|
|
x = d.rolling(window=5, step=step).kurt()
|
|
tm.assert_series_equal(expected, x)
|
|
|
|
# yields all NaN (window too small)
|
|
expected = Series([np.NaN] * 5)[::step]
|
|
d = Series(np.random.randn(5))
|
|
x = d.rolling(window=3, step=step).kurt()
|
|
tm.assert_series_equal(expected, x)
|
|
|
|
# yields [NaN, NaN, NaN, 1.224307, 2.671499]
|
|
d = Series([-1.50837035, -0.1297039, 0.19501095, 1.73508164, 0.41941401])
|
|
expected = Series([np.NaN, np.NaN, np.NaN, 1.224307, 2.671499])[::step]
|
|
x = d.rolling(window=4, step=step).kurt()
|
|
tm.assert_series_equal(expected, x)
|
|
|
|
|
|
def test_rolling_skew_eq_value_fperr(step):
|
|
# #18804 all rolling skew for all equal values should return Nan
|
|
# #46717 update: all equal values should return 0 instead of NaN
|
|
a = Series([1.1] * 15).rolling(window=10, step=step).skew()
|
|
assert (a[a.index >= 9] == 0).all()
|
|
assert a[a.index < 9].isna().all()
|
|
|
|
|
|
def test_rolling_kurt_eq_value_fperr(step):
|
|
# #18804 all rolling kurt for all equal values should return Nan
|
|
# #46717 update: all equal values should return -3 instead of NaN
|
|
a = Series([1.1] * 15).rolling(window=10, step=step).kurt()
|
|
assert (a[a.index >= 9] == -3).all()
|
|
assert a[a.index < 9].isna().all()
|