Inzynierka/Lib/site-packages/pandas/tests/window/test_timeseries_window.py
2023-06-02 12:51:02 +02:00

688 lines
23 KiB
Python

import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
NaT,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
from pandas.tseries import offsets
@pytest.fixture
def regular():
return DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
).set_index("A")
@pytest.fixture
def ragged():
df = DataFrame({"B": range(5)})
df.index = [
Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:05"),
Timestamp("20130101 09:00:06"),
]
return df
class TestRollingTS:
# rolling time-series friendly
# xref GH13327
def test_doc_string(self):
df = DataFrame(
{"B": [0, 1, 2, np.nan, 4]},
index=[
Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:05"),
Timestamp("20130101 09:00:06"),
],
)
df
df.rolling("2s").sum()
def test_invalid_window_non_int(self, regular):
# not a valid freq
msg = "passed window foobar is not compatible with a datetimelike index"
with pytest.raises(ValueError, match=msg):
regular.rolling(window="foobar")
# not a datetimelike index
msg = "window must be an integer"
with pytest.raises(ValueError, match=msg):
regular.reset_index().rolling(window="foobar")
@pytest.mark.parametrize("freq", ["2MS", offsets.MonthBegin(2)])
def test_invalid_window_nonfixed(self, freq, regular):
# non-fixed freqs
msg = "\\<2 \\* MonthBegins\\> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
regular.rolling(window=freq)
@pytest.mark.parametrize("freq", ["1D", offsets.Day(2), "2ms"])
def test_valid_window(self, freq, regular):
regular.rolling(window=freq)
@pytest.mark.parametrize("minp", [1.0, "foo", np.array([1, 2, 3])])
def test_invalid_minp(self, minp, regular):
# non-integer min_periods
msg = (
r"local variable 'minp' referenced before assignment|"
"min_periods must be an integer"
)
with pytest.raises(ValueError, match=msg):
regular.rolling(window="1D", min_periods=minp)
def test_on(self, regular):
df = regular
# not a valid column
msg = (
r"invalid on specified as foobar, must be a column "
"\\(of DataFrame\\), an Index or None"
)
with pytest.raises(ValueError, match=msg):
df.rolling(window="2s", on="foobar")
# column is valid
df = df.copy()
df["C"] = date_range("20130101", periods=len(df))
df.rolling(window="2d", on="C").sum()
# invalid columns
msg = "window must be an integer"
with pytest.raises(ValueError, match=msg):
df.rolling(window="2d", on="B")
# ok even though on non-selected
df.rolling(window="2d", on="C").B.sum()
def test_monotonic_on(self):
# on/index must be monotonic
df = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
)
assert df.A.is_monotonic_increasing
df.rolling("2s", on="A").sum()
df = df.set_index("A")
assert df.index.is_monotonic_increasing
df.rolling("2s").sum()
def test_non_monotonic_on(self):
# GH 19248
df = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
)
df = df.set_index("A")
non_monotonic_index = df.index.to_list()
non_monotonic_index[0] = non_monotonic_index[3]
df.index = non_monotonic_index
assert not df.index.is_monotonic_increasing
msg = "index values must be monotonic"
with pytest.raises(ValueError, match=msg):
df.rolling("2s").sum()
df = df.reset_index()
msg = (
r"invalid on specified as A, must be a column "
"\\(of DataFrame\\), an Index or None"
)
with pytest.raises(ValueError, match=msg):
df.rolling("2s", on="A").sum()
def test_frame_on(self):
df = DataFrame(
{"B": range(5), "C": date_range("20130101 09:00:00", periods=5, freq="3s")}
)
df["A"] = [
Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:05"),
Timestamp("20130101 09:00:06"),
]
# we are doing simulating using 'on'
expected = df.set_index("A").rolling("2s").B.sum().reset_index(drop=True)
result = df.rolling("2s", on="A").B.sum()
tm.assert_series_equal(result, expected)
# test as a frame
# we should be ignoring the 'on' as an aggregation column
# note that the expected is setting, computing, and resetting
# so the columns need to be switched compared
# to the actual result where they are ordered as in the
# original
expected = (
df.set_index("A").rolling("2s")[["B"]].sum().reset_index()[["B", "A"]]
)
result = df.rolling("2s", on="A")[["B"]].sum()
tm.assert_frame_equal(result, expected)
def test_frame_on2(self):
# using multiple aggregation columns
df = DataFrame(
{
"A": [0, 1, 2, 3, 4],
"B": [0, 1, 2, np.nan, 4],
"C": Index(
[
Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:05"),
Timestamp("20130101 09:00:06"),
]
),
},
columns=["A", "C", "B"],
)
expected1 = DataFrame(
{"A": [0.0, 1, 3, 3, 7], "B": [0, 1, 3, np.nan, 4], "C": df["C"]},
columns=["A", "C", "B"],
)
result = df.rolling("2s", on="C").sum()
expected = expected1
tm.assert_frame_equal(result, expected)
expected = Series([0, 1, 3, np.nan, 4], name="B")
result = df.rolling("2s", on="C").B.sum()
tm.assert_series_equal(result, expected)
expected = expected1[["A", "B", "C"]]
result = df.rolling("2s", on="C")[["A", "B", "C"]].sum()
tm.assert_frame_equal(result, expected)
def test_basic_regular(self, regular):
df = regular.copy()
df.index = date_range("20130101", periods=5, freq="D")
expected = df.rolling(window=1, min_periods=1).sum()
result = df.rolling(window="1D").sum()
tm.assert_frame_equal(result, expected)
df.index = date_range("20130101", periods=5, freq="2D")
expected = df.rolling(window=1, min_periods=1).sum()
result = df.rolling(window="2D", min_periods=1).sum()
tm.assert_frame_equal(result, expected)
expected = df.rolling(window=1, min_periods=1).sum()
result = df.rolling(window="2D", min_periods=1).sum()
tm.assert_frame_equal(result, expected)
expected = df.rolling(window=1).sum()
result = df.rolling(window="2D").sum()
tm.assert_frame_equal(result, expected)
def test_min_periods(self, regular):
# compare for min_periods
df = regular
# these slightly different
expected = df.rolling(2, min_periods=1).sum()
result = df.rolling("2s").sum()
tm.assert_frame_equal(result, expected)
expected = df.rolling(2, min_periods=1).sum()
result = df.rolling("2s", min_periods=1).sum()
tm.assert_frame_equal(result, expected)
def test_closed(self, regular):
# xref GH13965
df = DataFrame(
{"A": [1] * 5},
index=[
Timestamp("20130101 09:00:01"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:04"),
Timestamp("20130101 09:00:06"),
],
)
# closed must be 'right', 'left', 'both', 'neither'
msg = "closed must be 'right', 'left', 'both' or 'neither'"
with pytest.raises(ValueError, match=msg):
regular.rolling(window="2s", closed="blabla")
expected = df.copy()
expected["A"] = [1.0, 2, 2, 2, 1]
result = df.rolling("2s", closed="right").sum()
tm.assert_frame_equal(result, expected)
# default should be 'right'
result = df.rolling("2s").sum()
tm.assert_frame_equal(result, expected)
expected = df.copy()
expected["A"] = [1.0, 2, 3, 3, 2]
result = df.rolling("2s", closed="both").sum()
tm.assert_frame_equal(result, expected)
expected = df.copy()
expected["A"] = [np.nan, 1.0, 2, 2, 1]
result = df.rolling("2s", closed="left").sum()
tm.assert_frame_equal(result, expected)
expected = df.copy()
expected["A"] = [np.nan, 1.0, 1, 1, np.nan]
result = df.rolling("2s", closed="neither").sum()
tm.assert_frame_equal(result, expected)
def test_ragged_sum(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).sum()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).sum()
expected = df.copy()
expected["B"] = [0.0, 1, 3, 3, 7]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=2).sum()
expected = df.copy()
expected["B"] = [np.nan, np.nan, 3, np.nan, 7]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="3s", min_periods=1).sum()
expected = df.copy()
expected["B"] = [0.0, 1, 3, 5, 7]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="3s").sum()
expected = df.copy()
expected["B"] = [0.0, 1, 3, 5, 7]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="4s", min_periods=1).sum()
expected = df.copy()
expected["B"] = [0.0, 1, 3, 6, 9]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="4s", min_periods=3).sum()
expected = df.copy()
expected["B"] = [np.nan, np.nan, 3, 6, 9]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).sum()
expected = df.copy()
expected["B"] = [0.0, 1, 3, 6, 10]
tm.assert_frame_equal(result, expected)
def test_ragged_mean(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).mean()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).mean()
expected = df.copy()
expected["B"] = [0.0, 1, 1.5, 3.0, 3.5]
tm.assert_frame_equal(result, expected)
def test_ragged_median(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).median()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).median()
expected = df.copy()
expected["B"] = [0.0, 1, 1.5, 3.0, 3.5]
tm.assert_frame_equal(result, expected)
def test_ragged_quantile(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).quantile(0.5)
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).quantile(0.5)
expected = df.copy()
expected["B"] = [0.0, 1, 1.5, 3.0, 3.5]
tm.assert_frame_equal(result, expected)
def test_ragged_std(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).std(ddof=0)
expected = df.copy()
expected["B"] = [0.0] * 5
tm.assert_frame_equal(result, expected)
result = df.rolling(window="1s", min_periods=1).std(ddof=1)
expected = df.copy()
expected["B"] = [np.nan] * 5
tm.assert_frame_equal(result, expected)
result = df.rolling(window="3s", min_periods=1).std(ddof=0)
expected = df.copy()
expected["B"] = [0.0] + [0.5] * 4
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).std(ddof=1)
expected = df.copy()
expected["B"] = [np.nan, 0.707107, 1.0, 1.0, 1.290994]
tm.assert_frame_equal(result, expected)
def test_ragged_var(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).var(ddof=0)
expected = df.copy()
expected["B"] = [0.0] * 5
tm.assert_frame_equal(result, expected)
result = df.rolling(window="1s", min_periods=1).var(ddof=1)
expected = df.copy()
expected["B"] = [np.nan] * 5
tm.assert_frame_equal(result, expected)
result = df.rolling(window="3s", min_periods=1).var(ddof=0)
expected = df.copy()
expected["B"] = [0.0] + [0.25] * 4
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).var(ddof=1)
expected = df.copy()
expected["B"] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.0]
tm.assert_frame_equal(result, expected)
def test_ragged_skew(self, ragged):
df = ragged
result = df.rolling(window="3s", min_periods=1).skew()
expected = df.copy()
expected["B"] = [np.nan] * 5
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).skew()
expected = df.copy()
expected["B"] = [np.nan] * 2 + [0.0, 0.0, 0.0]
tm.assert_frame_equal(result, expected)
def test_ragged_kurt(self, ragged):
df = ragged
result = df.rolling(window="3s", min_periods=1).kurt()
expected = df.copy()
expected["B"] = [np.nan] * 5
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).kurt()
expected = df.copy()
expected["B"] = [np.nan] * 4 + [-1.2]
tm.assert_frame_equal(result, expected)
def test_ragged_count(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).count()
expected = df.copy()
expected["B"] = [1.0, 1, 1, 1, 1]
tm.assert_frame_equal(result, expected)
df = ragged
result = df.rolling(window="1s").count()
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).count()
expected = df.copy()
expected["B"] = [1.0, 1, 2, 1, 2]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=2).count()
expected = df.copy()
expected["B"] = [np.nan, np.nan, 2, np.nan, 2]
tm.assert_frame_equal(result, expected)
def test_regular_min(self):
df = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": [0.0, 1, 2, 3, 4]}
).set_index("A")
result = df.rolling("1s").min()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
df = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": [5, 4, 3, 4, 5]}
).set_index("A")
tm.assert_frame_equal(result, expected)
result = df.rolling("2s").min()
expected = df.copy()
expected["B"] = [5.0, 4, 3, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling("5s").min()
expected = df.copy()
expected["B"] = [5.0, 4, 3, 3, 3]
tm.assert_frame_equal(result, expected)
def test_ragged_min(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).min()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).min()
expected = df.copy()
expected["B"] = [0.0, 1, 1, 3, 3]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).min()
expected = df.copy()
expected["B"] = [0.0, 0, 0, 1, 1]
tm.assert_frame_equal(result, expected)
def test_perf_min(self):
N = 10000
dfp = DataFrame(
{"B": np.random.randn(N)}, index=date_range("20130101", periods=N, freq="s")
)
expected = dfp.rolling(2, min_periods=1).min()
result = dfp.rolling("2s").min()
assert ((result - expected) < 0.01).all().bool()
expected = dfp.rolling(200, min_periods=1).min()
result = dfp.rolling("200s").min()
assert ((result - expected) < 0.01).all().bool()
def test_ragged_max(self, ragged):
df = ragged
result = df.rolling(window="1s", min_periods=1).max()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="2s", min_periods=1).max()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
result = df.rolling(window="5s", min_periods=1).max()
expected = df.copy()
expected["B"] = [0.0, 1, 2, 3, 4]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"freq, op, result_data",
[
("ms", "min", [0.0] * 10),
("ms", "mean", [0.0] * 9 + [2.0 / 9]),
("ms", "max", [0.0] * 9 + [2.0]),
("s", "min", [0.0] * 10),
("s", "mean", [0.0] * 9 + [2.0 / 9]),
("s", "max", [0.0] * 9 + [2.0]),
("min", "min", [0.0] * 10),
("min", "mean", [0.0] * 9 + [2.0 / 9]),
("min", "max", [0.0] * 9 + [2.0]),
("h", "min", [0.0] * 10),
("h", "mean", [0.0] * 9 + [2.0 / 9]),
("h", "max", [0.0] * 9 + [2.0]),
("D", "min", [0.0] * 10),
("D", "mean", [0.0] * 9 + [2.0 / 9]),
("D", "max", [0.0] * 9 + [2.0]),
],
)
def test_freqs_ops(self, freq, op, result_data):
# GH 21096
index = date_range(start="2018-1-1 01:00:00", freq=f"1{freq}", periods=10)
# Explicit cast to float to avoid implicit cast when setting nan
s = Series(data=0, index=index, dtype="float")
s.iloc[1] = np.nan
s.iloc[-1] = 2
result = getattr(s.rolling(window=f"10{freq}"), op)()
expected = Series(data=result_data, index=index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"f",
[
"sum",
"mean",
"count",
"median",
"std",
"var",
"kurt",
"skew",
"min",
"max",
],
)
def test_all(self, f, regular):
# simple comparison of integer vs time-based windowing
df = regular * 2
er = df.rolling(window=1)
r = df.rolling(window="1s")
result = getattr(r, f)()
expected = getattr(er, f)()
tm.assert_frame_equal(result, expected)
result = r.quantile(0.5)
expected = er.quantile(0.5)
tm.assert_frame_equal(result, expected)
def test_all2(self, arithmetic_win_operators):
f = arithmetic_win_operators
# more sophisticated comparison of integer vs.
# time-based windowing
df = DataFrame(
{"B": np.arange(50)}, index=date_range("20130101", periods=50, freq="H")
)
# in-range data
dft = df.between_time("09:00", "16:00")
r = dft.rolling(window="5H")
result = getattr(r, f)()
# we need to roll the days separately
# to compare with a time-based roll
# finally groupby-apply will return a multi-index
# so we need to drop the day
def agg_by_day(x):
x = x.between_time("09:00", "16:00")
return getattr(x.rolling(5, min_periods=1), f)()
expected = (
df.groupby(df.index.day).apply(agg_by_day).reset_index(level=0, drop=True)
)
tm.assert_frame_equal(result, expected)
def test_rolling_cov_offset(self):
# GH16058
idx = date_range("2017-01-01", periods=24, freq="1h")
ss = Series(np.arange(len(idx)), index=idx)
result = ss.rolling("2h").cov()
expected = Series([np.nan] + [0.5] * (len(idx) - 1), index=idx)
tm.assert_series_equal(result, expected)
expected2 = ss.rolling(2, min_periods=1).cov()
tm.assert_series_equal(result, expected2)
result = ss.rolling("3h").cov()
expected = Series([np.nan, 0.5] + [1.0] * (len(idx) - 2), index=idx)
tm.assert_series_equal(result, expected)
expected2 = ss.rolling(3, min_periods=1).cov()
tm.assert_series_equal(result, expected2)
def test_rolling_on_decreasing_index(self):
# GH-19248, GH-32385
index = [
Timestamp("20190101 09:00:30"),
Timestamp("20190101 09:00:27"),
Timestamp("20190101 09:00:20"),
Timestamp("20190101 09:00:18"),
Timestamp("20190101 09:00:10"),
]
df = DataFrame({"column": [3, 4, 4, 5, 6]}, index=index)
result = df.rolling("5s").min()
expected = DataFrame({"column": [3.0, 3.0, 4.0, 4.0, 6.0]}, index=index)
tm.assert_frame_equal(result, expected)
def test_rolling_on_empty(self):
# GH-32385
df = DataFrame({"column": []}, index=[])
result = df.rolling("5s").min()
expected = DataFrame({"column": []}, index=[])
tm.assert_frame_equal(result, expected)
def test_rolling_on_multi_index_level(self):
# GH-15584
df = DataFrame(
{"column": range(6)},
index=MultiIndex.from_product(
[date_range("20190101", periods=3), range(2)], names=["date", "seq"]
),
)
result = df.rolling("10d", on=df.index.get_level_values("date")).sum()
expected = DataFrame(
{"column": [0.0, 1.0, 3.0, 6.0, 10.0, 15.0]}, index=df.index
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("msg, axis", [["column", 1], ["index", 0]])
def test_nat_axis_error(msg, axis):
idx = [Timestamp("2020"), NaT]
kwargs = {"columns" if axis == 1 else "index": idx}
df = DataFrame(np.eye(2), **kwargs)
with pytest.raises(ValueError, match=f"{msg} values must not have NaT"):
df.rolling("D", axis=axis).mean()