56 lines
1.9 KiB
Python
56 lines
1.9 KiB
Python
"""
|
|
Tests for sklearn.cluster._feature_agglomeration
|
|
"""
|
|
# Authors: Sergul Aydore 2017
|
|
import numpy as np
|
|
|
|
from numpy.testing import assert_array_equal
|
|
from sklearn.cluster import FeatureAgglomeration
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.datasets import make_blobs
|
|
|
|
|
|
def test_feature_agglomeration():
|
|
n_clusters = 1
|
|
X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features)
|
|
|
|
agglo_mean = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.mean)
|
|
agglo_median = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.median)
|
|
agglo_mean.fit(X)
|
|
agglo_median.fit(X)
|
|
|
|
assert np.size(np.unique(agglo_mean.labels_)) == n_clusters
|
|
assert np.size(np.unique(agglo_median.labels_)) == n_clusters
|
|
assert np.size(agglo_mean.labels_) == X.shape[1]
|
|
assert np.size(agglo_median.labels_) == X.shape[1]
|
|
|
|
# Test transform
|
|
Xt_mean = agglo_mean.transform(X)
|
|
Xt_median = agglo_median.transform(X)
|
|
assert Xt_mean.shape[1] == n_clusters
|
|
assert Xt_median.shape[1] == n_clusters
|
|
assert Xt_mean == np.array([1 / 3.0])
|
|
assert Xt_median == np.array([0.0])
|
|
|
|
# Test inverse transform
|
|
X_full_mean = agglo_mean.inverse_transform(Xt_mean)
|
|
X_full_median = agglo_median.inverse_transform(Xt_median)
|
|
assert np.unique(X_full_mean[0]).size == n_clusters
|
|
assert np.unique(X_full_median[0]).size == n_clusters
|
|
|
|
assert_array_almost_equal(agglo_mean.transform(X_full_mean), Xt_mean)
|
|
assert_array_almost_equal(agglo_median.transform(X_full_median), Xt_median)
|
|
|
|
|
|
def test_feature_agglomeration_feature_names_out():
|
|
"""Check `get_feature_names_out` for `FeatureAgglomeration`."""
|
|
X, _ = make_blobs(n_features=6, random_state=0)
|
|
agglo = FeatureAgglomeration(n_clusters=3)
|
|
agglo.fit(X)
|
|
n_clusters = agglo.n_clusters_
|
|
|
|
names_out = agglo.get_feature_names_out()
|
|
assert_array_equal(
|
|
[f"featureagglomeration{i}" for i in range(n_clusters)], names_out
|
|
)
|