Inzynierka/Lib/site-packages/sklearn/cluster/tests/test_spectral.py
2023-06-02 12:51:02 +02:00

331 lines
11 KiB
Python

"""Testing for Spectral Clustering methods"""
import re
import numpy as np
from scipy import sparse
from scipy.linalg import LinAlgError
import pytest
import pickle
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_array_equal
from sklearn.cluster import SpectralClustering, spectral_clustering
from sklearn.cluster._spectral import discretize, cluster_qr
from sklearn.feature_extraction import img_to_graph
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel
from sklearn.neighbors import NearestNeighbors
from sklearn.datasets import make_blobs
try:
from pyamg import smoothed_aggregation_solver # noqa
amg_loaded = True
except ImportError:
amg_loaded = False
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(
n_samples=60,
n_features=2,
centers=centers,
cluster_std=0.4,
shuffle=True,
random_state=0,
)
@pytest.mark.parametrize("eigen_solver", ("arpack", "lobpcg"))
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_spectral_clustering(eigen_solver, assign_labels):
S = np.array(
[
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
]
)
for mat in (S, sparse.csr_matrix(S)):
model = SpectralClustering(
random_state=0,
n_clusters=2,
affinity="precomputed",
eigen_solver=eigen_solver,
assign_labels=assign_labels,
).fit(mat)
labels = model.labels_
if labels[0] == 0:
labels = 1 - labels
assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1
model_copy = pickle.loads(pickle.dumps(model))
assert model_copy.n_clusters == model.n_clusters
assert model_copy.eigen_solver == model.eigen_solver
assert_array_equal(model_copy.labels_, model.labels_)
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_spectral_clustering_sparse(assign_labels):
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
S = rbf_kernel(X, gamma=1)
S = np.maximum(S - 1e-4, 0)
S = sparse.coo_matrix(S)
labels = (
SpectralClustering(
random_state=0,
n_clusters=2,
affinity="precomputed",
assign_labels=assign_labels,
)
.fit(S)
.labels_
)
assert adjusted_rand_score(y, labels) == 1
def test_precomputed_nearest_neighbors_filtering():
# Test precomputed graph filtering when containing too many neighbors
X, y = make_blobs(
n_samples=200, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
n_neighbors = 2
results = []
for additional_neighbors in [0, 10]:
nn = NearestNeighbors(n_neighbors=n_neighbors + additional_neighbors).fit(X)
graph = nn.kneighbors_graph(X, mode="connectivity")
labels = (
SpectralClustering(
random_state=0,
n_clusters=2,
affinity="precomputed_nearest_neighbors",
n_neighbors=n_neighbors,
)
.fit(graph)
.labels_
)
results.append(labels)
assert_array_equal(results[0], results[1])
def test_affinities():
# Note: in the following, random_state has been selected to have
# a dataset that yields a stable eigen decomposition both when built
# on OSX and Linux
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
# nearest neighbors affinity
sp = SpectralClustering(n_clusters=2, affinity="nearest_neighbors", random_state=0)
with pytest.warns(UserWarning, match="not fully connected"):
sp.fit(X)
assert adjusted_rand_score(y, sp.labels_) == 1
sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0)
labels = sp.fit(X).labels_
assert adjusted_rand_score(y, labels) == 1
X = check_random_state(10).rand(10, 5) * 10
kernels_available = kernel_metrics()
for kern in kernels_available:
# Additive chi^2 gives a negative similarity matrix which
# doesn't make sense for spectral clustering
if kern != "additive_chi2":
sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0)
labels = sp.fit(X).labels_
assert (X.shape[0],) == labels.shape
sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0)
labels = sp.fit(X).labels_
assert (X.shape[0],) == labels.shape
def histogram(x, y, **kwargs):
# Histogram kernel implemented as a callable.
assert kwargs == {} # no kernel_params that we didn't ask for
return np.minimum(x, y).sum()
sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0)
labels = sp.fit(X).labels_
assert (X.shape[0],) == labels.shape
def test_cluster_qr():
# cluster_qr by itself should not be used for clustering generic data
# other than the rows of the eigenvectors within spectral clustering,
# but cluster_qr must still preserve the labels for different dtypes
# of the generic fixed input even if the labels may be meaningless.
random_state = np.random.RandomState(seed=8)
n_samples, n_components = 10, 5
data = random_state.randn(n_samples, n_components)
labels_float64 = cluster_qr(data.astype(np.float64))
# Each sample is assigned a cluster identifier
assert labels_float64.shape == (n_samples,)
# All components should be covered by the assignment
assert np.array_equal(np.unique(labels_float64), np.arange(n_components))
# Single precision data should yield the same cluster assignments
labels_float32 = cluster_qr(data.astype(np.float32))
assert np.array_equal(labels_float64, labels_float32)
def test_cluster_qr_permutation_invariance():
# cluster_qr must be invariant to sample permutation.
random_state = np.random.RandomState(seed=8)
n_samples, n_components = 100, 5
data = random_state.randn(n_samples, n_components)
perm = random_state.permutation(n_samples)
assert np.array_equal(
cluster_qr(data)[perm],
cluster_qr(data[perm]),
)
@pytest.mark.parametrize("n_samples", [50, 100, 150, 500])
def test_discretize(n_samples):
# Test the discretize using a noise assignment matrix
random_state = np.random.RandomState(seed=8)
for n_class in range(2, 10):
# random class labels
y_true = random_state.randint(0, n_class + 1, n_samples)
y_true = np.array(y_true, float)
# noise class assignment matrix
y_indicator = sparse.coo_matrix(
(np.ones(n_samples), (np.arange(n_samples), y_true)),
shape=(n_samples, n_class + 1),
)
y_true_noisy = y_indicator.toarray() + 0.1 * random_state.randn(
n_samples, n_class + 1
)
y_pred = discretize(y_true_noisy, random_state=random_state)
assert adjusted_rand_score(y_true, y_pred) > 0.8
# TODO: Remove when pyamg does replaces sp.rand call with np.random.rand
# https://github.com/scikit-learn/scikit-learn/issues/15913
@pytest.mark.filterwarnings(
"ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of np.float
@pytest.mark.filterwarnings(
"ignore:`np.float` is a deprecated alias:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of pinv2
@pytest.mark.filterwarnings(
"ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*"
)
def test_spectral_clustering_with_arpack_amg_solvers():
# Test that spectral_clustering is the same for arpack and amg solver
# Based on toy example from plot_segmentation_toy.py
# a small two coin image
x, y = np.indices((40, 40))
center1, center2 = (14, 12), (20, 25)
radius1, radius2 = 8, 7
circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1**2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2**2
circles = circle1 | circle2
mask = circles.copy()
img = circles.astype(float)
graph = img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())
labels_arpack = spectral_clustering(
graph, n_clusters=2, eigen_solver="arpack", random_state=0
)
assert len(np.unique(labels_arpack)) == 2
if amg_loaded:
labels_amg = spectral_clustering(
graph, n_clusters=2, eigen_solver="amg", random_state=0
)
assert adjusted_rand_score(labels_arpack, labels_amg) == 1
else:
with pytest.raises(ValueError):
spectral_clustering(graph, n_clusters=2, eigen_solver="amg", random_state=0)
def test_n_components():
# Test that after adding n_components, result is different and
# n_components = n_clusters by default
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
sp = SpectralClustering(n_clusters=2, random_state=0)
labels = sp.fit(X).labels_
# set n_components = n_cluster and test if result is the same
labels_same_ncomp = (
SpectralClustering(n_clusters=2, n_components=2, random_state=0).fit(X).labels_
)
# test that n_components=n_clusters by default
assert_array_equal(labels, labels_same_ncomp)
# test that n_components affect result
# n_clusters=8 by default, and set n_components=2
labels_diff_ncomp = (
SpectralClustering(n_components=2, random_state=0).fit(X).labels_
)
assert not np.array_equal(labels, labels_diff_ncomp)
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_verbose(assign_labels, capsys):
# Check verbose mode of KMeans for better coverage.
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
SpectralClustering(n_clusters=2, random_state=42, verbose=1).fit(X)
captured = capsys.readouterr()
assert re.search(r"Computing label assignment using", captured.out)
if assign_labels == "kmeans":
assert re.search(r"Initialization complete", captured.out)
assert re.search(r"Iteration [0-9]+, inertia", captured.out)
def test_spectral_clustering_np_matrix_raises():
"""Check that spectral_clustering raises an informative error when passed
a np.matrix. See #10993"""
X = np.matrix([[0.0, 2.0], [2.0, 0.0]])
msg = r"spectral_clustering does not support passing in affinity as an np\.matrix"
with pytest.raises(TypeError, match=msg):
spectral_clustering(X)
def test_spectral_clustering_not_infinite_loop(capsys, monkeypatch):
"""Check that discretize raises LinAlgError when svd never converges.
Non-regression test for #21380
"""
def new_svd(*args, **kwargs):
raise LinAlgError()
monkeypatch.setattr(np.linalg, "svd", new_svd)
vectors = np.ones((10, 4))
with pytest.raises(LinAlgError, match="SVD did not converge"):
discretize(vectors)