1799 lines
56 KiB
Python
1799 lines
56 KiB
Python
"""
|
|
Testing for the forest module (sklearn.ensemble.forest).
|
|
"""
|
|
|
|
# Authors: Gilles Louppe,
|
|
# Brian Holt,
|
|
# Andreas Mueller,
|
|
# Arnaud Joly
|
|
# License: BSD 3 clause
|
|
|
|
import pickle
|
|
import math
|
|
from collections import defaultdict
|
|
import itertools
|
|
from functools import partial
|
|
from itertools import combinations
|
|
from itertools import product
|
|
from typing import Dict, Any
|
|
|
|
import numpy as np
|
|
from scipy.sparse import csr_matrix
|
|
from scipy.sparse import csc_matrix
|
|
from scipy.sparse import coo_matrix
|
|
from scipy.special import comb
|
|
|
|
import joblib
|
|
|
|
import pytest
|
|
|
|
import sklearn
|
|
from sklearn.dummy import DummyRegressor
|
|
from sklearn.metrics import mean_poisson_deviance
|
|
from sklearn.utils._testing import assert_almost_equal
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import _convert_container
|
|
from sklearn.utils._testing import ignore_warnings
|
|
from sklearn.utils._testing import skip_if_no_parallel
|
|
|
|
from sklearn.exceptions import NotFittedError
|
|
|
|
from sklearn import datasets
|
|
from sklearn.decomposition import TruncatedSVD
|
|
from sklearn.datasets import make_classification
|
|
from sklearn.ensemble import ExtraTreesClassifier
|
|
from sklearn.ensemble import ExtraTreesRegressor
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.ensemble import RandomTreesEmbedding
|
|
from sklearn.model_selection import train_test_split, cross_val_score
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.svm import LinearSVC
|
|
from sklearn.utils.parallel import Parallel
|
|
from sklearn.utils.validation import check_random_state
|
|
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
from sklearn.tree._classes import SPARSE_SPLITTERS
|
|
|
|
|
|
# toy sample
|
|
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
|
|
y = [-1, -1, -1, 1, 1, 1]
|
|
T = [[-1, -1], [2, 2], [3, 2]]
|
|
true_result = [-1, 1, 1]
|
|
|
|
# Larger classification sample used for testing feature importances
|
|
X_large, y_large = datasets.make_classification(
|
|
n_samples=500,
|
|
n_features=10,
|
|
n_informative=3,
|
|
n_redundant=0,
|
|
n_repeated=0,
|
|
shuffle=False,
|
|
random_state=0,
|
|
)
|
|
|
|
# also load the iris dataset
|
|
# and randomly permute it
|
|
iris = datasets.load_iris()
|
|
rng = check_random_state(0)
|
|
perm = rng.permutation(iris.target.size)
|
|
iris.data = iris.data[perm]
|
|
iris.target = iris.target[perm]
|
|
|
|
# Make regression dataset
|
|
X_reg, y_reg = datasets.make_regression(n_samples=500, n_features=10, random_state=1)
|
|
|
|
# also make a hastie_10_2 dataset
|
|
hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1)
|
|
hastie_X = hastie_X.astype(np.float32)
|
|
|
|
# Get the default backend in joblib to test parallelism and interaction with
|
|
# different backends
|
|
DEFAULT_JOBLIB_BACKEND = joblib.parallel.get_active_backend()[0].__class__
|
|
|
|
FOREST_CLASSIFIERS = {
|
|
"ExtraTreesClassifier": ExtraTreesClassifier,
|
|
"RandomForestClassifier": RandomForestClassifier,
|
|
}
|
|
|
|
FOREST_REGRESSORS = {
|
|
"ExtraTreesRegressor": ExtraTreesRegressor,
|
|
"RandomForestRegressor": RandomForestRegressor,
|
|
}
|
|
|
|
FOREST_TRANSFORMERS = {
|
|
"RandomTreesEmbedding": RandomTreesEmbedding,
|
|
}
|
|
|
|
FOREST_ESTIMATORS: Dict[str, Any] = dict()
|
|
FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS)
|
|
FOREST_ESTIMATORS.update(FOREST_REGRESSORS)
|
|
FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS)
|
|
|
|
FOREST_CLASSIFIERS_REGRESSORS: Dict[str, Any] = FOREST_CLASSIFIERS.copy()
|
|
FOREST_CLASSIFIERS_REGRESSORS.update(FOREST_REGRESSORS)
|
|
|
|
|
|
def check_classification_toy(name):
|
|
"""Check classification on a toy dataset."""
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
|
|
clf = ForestClassifier(n_estimators=10, random_state=1)
|
|
clf.fit(X, y)
|
|
assert_array_equal(clf.predict(T), true_result)
|
|
assert 10 == len(clf)
|
|
|
|
clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1)
|
|
clf.fit(X, y)
|
|
assert_array_equal(clf.predict(T), true_result)
|
|
assert 10 == len(clf)
|
|
|
|
# also test apply
|
|
leaf_indices = clf.apply(X)
|
|
assert leaf_indices.shape == (len(X), clf.n_estimators)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_classification_toy(name):
|
|
check_classification_toy(name)
|
|
|
|
|
|
def check_iris_criterion(name, criterion):
|
|
# Check consistency on dataset iris.
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
|
|
clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1)
|
|
clf.fit(iris.data, iris.target)
|
|
score = clf.score(iris.data, iris.target)
|
|
assert score > 0.9, "Failed with criterion %s and score = %f" % (criterion, score)
|
|
|
|
clf = ForestClassifier(
|
|
n_estimators=10, criterion=criterion, max_features=2, random_state=1
|
|
)
|
|
clf.fit(iris.data, iris.target)
|
|
score = clf.score(iris.data, iris.target)
|
|
assert score > 0.5, "Failed with criterion %s and score = %f" % (criterion, score)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
@pytest.mark.parametrize("criterion", ("gini", "log_loss"))
|
|
def test_iris(name, criterion):
|
|
check_iris_criterion(name, criterion)
|
|
|
|
|
|
def check_regression_criterion(name, criterion):
|
|
# Check consistency on regression dataset.
|
|
ForestRegressor = FOREST_REGRESSORS[name]
|
|
|
|
reg = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1)
|
|
reg.fit(X_reg, y_reg)
|
|
score = reg.score(X_reg, y_reg)
|
|
assert (
|
|
score > 0.93
|
|
), "Failed with max_features=None, criterion %s and score = %f" % (
|
|
criterion,
|
|
score,
|
|
)
|
|
|
|
reg = ForestRegressor(
|
|
n_estimators=5, criterion=criterion, max_features=6, random_state=1
|
|
)
|
|
reg.fit(X_reg, y_reg)
|
|
score = reg.score(X_reg, y_reg)
|
|
assert score > 0.92, "Failed with max_features=6, criterion %s and score = %f" % (
|
|
criterion,
|
|
score,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_REGRESSORS)
|
|
@pytest.mark.parametrize(
|
|
"criterion", ("squared_error", "absolute_error", "friedman_mse")
|
|
)
|
|
def test_regression(name, criterion):
|
|
check_regression_criterion(name, criterion)
|
|
|
|
|
|
def test_poisson_vs_mse():
|
|
"""Test that random forest with poisson criterion performs better than
|
|
mse for a poisson target.
|
|
|
|
There is a similar test for DecisionTreeRegressor.
|
|
"""
|
|
rng = np.random.RandomState(42)
|
|
n_train, n_test, n_features = 500, 500, 10
|
|
X = datasets.make_low_rank_matrix(
|
|
n_samples=n_train + n_test, n_features=n_features, random_state=rng
|
|
)
|
|
# We create a log-linear Poisson model and downscale coef as it will get
|
|
# exponentiated.
|
|
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
|
|
y = rng.poisson(lam=np.exp(X @ coef))
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=n_test, random_state=rng
|
|
)
|
|
# We prevent some overfitting by setting min_samples_split=10.
|
|
forest_poi = RandomForestRegressor(
|
|
criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng
|
|
)
|
|
forest_mse = RandomForestRegressor(
|
|
criterion="squared_error",
|
|
min_samples_leaf=10,
|
|
max_features="sqrt",
|
|
random_state=rng,
|
|
)
|
|
|
|
forest_poi.fit(X_train, y_train)
|
|
forest_mse.fit(X_train, y_train)
|
|
dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)
|
|
|
|
for X, y, data_name in [(X_train, y_train, "train"), (X_test, y_test, "test")]:
|
|
metric_poi = mean_poisson_deviance(y, forest_poi.predict(X))
|
|
# squared_error forest might produce non-positive predictions => clip
|
|
# If y = 0 for those, the poisson deviance gets too good.
|
|
# If we drew more samples, we would eventually get y > 0 and the
|
|
# poisson deviance would explode, i.e. be undefined. Therefore, we do
|
|
# not clip to a tiny value like 1e-15, but to 1e-6. This acts like a
|
|
# small penalty to the non-positive predictions.
|
|
metric_mse = mean_poisson_deviance(
|
|
y, np.clip(forest_mse.predict(X), 1e-6, None)
|
|
)
|
|
metric_dummy = mean_poisson_deviance(y, dummy.predict(X))
|
|
# As squared_error might correctly predict 0 in train set, its train
|
|
# score can be better than Poisson. This is no longer the case for the
|
|
# test set. But keep the above comment for clipping in mind.
|
|
if data_name == "test":
|
|
assert metric_poi < metric_mse
|
|
assert metric_poi < 0.8 * metric_dummy
|
|
|
|
|
|
@pytest.mark.parametrize("criterion", ("poisson", "squared_error"))
|
|
def test_balance_property_random_forest(criterion):
|
|
""" "Test that sum(y_pred)==sum(y_true) on the training set."""
|
|
rng = np.random.RandomState(42)
|
|
n_train, n_test, n_features = 500, 500, 10
|
|
X = datasets.make_low_rank_matrix(
|
|
n_samples=n_train + n_test, n_features=n_features, random_state=rng
|
|
)
|
|
|
|
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
|
|
y = rng.poisson(lam=np.exp(X @ coef))
|
|
|
|
reg = RandomForestRegressor(
|
|
criterion=criterion, n_estimators=10, bootstrap=False, random_state=rng
|
|
)
|
|
reg.fit(X, y)
|
|
|
|
assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y))
|
|
|
|
|
|
def check_regressor_attributes(name):
|
|
# Regression models should not have a classes_ attribute.
|
|
r = FOREST_REGRESSORS[name](random_state=0)
|
|
assert not hasattr(r, "classes_")
|
|
assert not hasattr(r, "n_classes_")
|
|
|
|
r.fit([[1, 2, 3], [4, 5, 6]], [1, 2])
|
|
assert not hasattr(r, "classes_")
|
|
assert not hasattr(r, "n_classes_")
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_REGRESSORS)
|
|
def test_regressor_attributes(name):
|
|
check_regressor_attributes(name)
|
|
|
|
|
|
def check_probability(name):
|
|
# Predict probabilities.
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
with np.errstate(divide="ignore"):
|
|
clf = ForestClassifier(
|
|
n_estimators=10, random_state=1, max_features=1, max_depth=1
|
|
)
|
|
clf.fit(iris.data, iris.target)
|
|
assert_array_almost_equal(
|
|
np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])
|
|
)
|
|
assert_array_almost_equal(
|
|
clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_probability(name):
|
|
check_probability(name)
|
|
|
|
|
|
def check_importances(name, criterion, dtype, tolerance):
|
|
# cast as dype
|
|
X = X_large.astype(dtype, copy=False)
|
|
y = y_large.astype(dtype, copy=False)
|
|
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
|
|
est = ForestEstimator(n_estimators=10, criterion=criterion, random_state=0)
|
|
est.fit(X, y)
|
|
importances = est.feature_importances_
|
|
|
|
# The forest estimator can detect that only the first 3 features of the
|
|
# dataset are informative:
|
|
n_important = np.sum(importances > 0.1)
|
|
assert importances.shape[0] == 10
|
|
assert n_important == 3
|
|
assert np.all(importances[:3] > 0.1)
|
|
|
|
# Check with parallel
|
|
importances = est.feature_importances_
|
|
est.set_params(n_jobs=2)
|
|
importances_parallel = est.feature_importances_
|
|
assert_array_almost_equal(importances, importances_parallel)
|
|
|
|
# Check with sample weights
|
|
sample_weight = check_random_state(0).randint(1, 10, len(X))
|
|
est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion)
|
|
est.fit(X, y, sample_weight=sample_weight)
|
|
importances = est.feature_importances_
|
|
assert np.all(importances >= 0.0)
|
|
|
|
for scale in [0.5, 100]:
|
|
est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion)
|
|
est.fit(X, y, sample_weight=scale * sample_weight)
|
|
importances_bis = est.feature_importances_
|
|
assert np.abs(importances - importances_bis).mean() < tolerance
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", (np.float64, np.float32))
|
|
@pytest.mark.parametrize(
|
|
"name, criterion",
|
|
itertools.chain(
|
|
product(FOREST_CLASSIFIERS, ["gini", "log_loss"]),
|
|
product(FOREST_REGRESSORS, ["squared_error", "friedman_mse", "absolute_error"]),
|
|
),
|
|
)
|
|
def test_importances(dtype, name, criterion):
|
|
tolerance = 0.01
|
|
if name in FOREST_REGRESSORS and criterion == "absolute_error":
|
|
tolerance = 0.05
|
|
check_importances(name, criterion, dtype, tolerance)
|
|
|
|
|
|
def test_importances_asymptotic():
|
|
# Check whether variable importances of totally randomized trees
|
|
# converge towards their theoretical values (See Louppe et al,
|
|
# Understanding variable importances in forests of randomized trees, 2013).
|
|
|
|
def binomial(k, n):
|
|
return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True)
|
|
|
|
def entropy(samples):
|
|
n_samples = len(samples)
|
|
entropy = 0.0
|
|
|
|
for count in np.bincount(samples):
|
|
p = 1.0 * count / n_samples
|
|
if p > 0:
|
|
entropy -= p * np.log2(p)
|
|
|
|
return entropy
|
|
|
|
def mdi_importance(X_m, X, y):
|
|
n_samples, n_features = X.shape
|
|
|
|
features = list(range(n_features))
|
|
features.pop(X_m)
|
|
values = [np.unique(X[:, i]) for i in range(n_features)]
|
|
|
|
imp = 0.0
|
|
|
|
for k in range(n_features):
|
|
# Weight of each B of size k
|
|
coef = 1.0 / (binomial(k, n_features) * (n_features - k))
|
|
|
|
# For all B of size k
|
|
for B in combinations(features, k):
|
|
# For all values B=b
|
|
for b in product(*[values[B[j]] for j in range(k)]):
|
|
mask_b = np.ones(n_samples, dtype=bool)
|
|
|
|
for j in range(k):
|
|
mask_b &= X[:, B[j]] == b[j]
|
|
|
|
X_, y_ = X[mask_b, :], y[mask_b]
|
|
n_samples_b = len(X_)
|
|
|
|
if n_samples_b > 0:
|
|
children = []
|
|
|
|
for xi in values[X_m]:
|
|
mask_xi = X_[:, X_m] == xi
|
|
children.append(y_[mask_xi])
|
|
|
|
imp += (
|
|
coef
|
|
* (1.0 * n_samples_b / n_samples) # P(B=b)
|
|
* (
|
|
entropy(y_)
|
|
- sum(
|
|
[
|
|
entropy(c) * len(c) / n_samples_b
|
|
for c in children
|
|
]
|
|
)
|
|
)
|
|
)
|
|
|
|
return imp
|
|
|
|
data = np.array(
|
|
[
|
|
[0, 0, 1, 0, 0, 1, 0, 1],
|
|
[1, 0, 1, 1, 1, 0, 1, 2],
|
|
[1, 0, 1, 1, 0, 1, 1, 3],
|
|
[0, 1, 1, 1, 0, 1, 0, 4],
|
|
[1, 1, 0, 1, 0, 1, 1, 5],
|
|
[1, 1, 0, 1, 1, 1, 1, 6],
|
|
[1, 0, 1, 0, 0, 1, 0, 7],
|
|
[1, 1, 1, 1, 1, 1, 1, 8],
|
|
[1, 1, 1, 1, 0, 1, 1, 9],
|
|
[1, 1, 1, 0, 1, 1, 1, 0],
|
|
]
|
|
)
|
|
|
|
X, y = np.array(data[:, :7], dtype=bool), data[:, 7]
|
|
n_features = X.shape[1]
|
|
|
|
# Compute true importances
|
|
true_importances = np.zeros(n_features)
|
|
|
|
for i in range(n_features):
|
|
true_importances[i] = mdi_importance(i, X, y)
|
|
|
|
# Estimate importances with totally randomized trees
|
|
clf = ExtraTreesClassifier(
|
|
n_estimators=500, max_features=1, criterion="log_loss", random_state=0
|
|
).fit(X, y)
|
|
|
|
importances = (
|
|
sum(
|
|
tree.tree_.compute_feature_importances(normalize=False)
|
|
for tree in clf.estimators_
|
|
)
|
|
/ clf.n_estimators
|
|
)
|
|
|
|
# Check correctness
|
|
assert_almost_equal(entropy(y), sum(importances))
|
|
assert np.abs(true_importances - importances).mean() < 0.01
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_unfitted_feature_importances(name):
|
|
err_msg = (
|
|
"This {} instance is not fitted yet. Call 'fit' with "
|
|
"appropriate arguments before using this estimator.".format(name)
|
|
)
|
|
with pytest.raises(NotFittedError, match=err_msg):
|
|
getattr(FOREST_ESTIMATORS[name](), "feature_importances_")
|
|
|
|
|
|
@pytest.mark.parametrize("ForestClassifier", FOREST_CLASSIFIERS.values())
|
|
@pytest.mark.parametrize("X_type", ["array", "sparse_csr", "sparse_csc"])
|
|
@pytest.mark.parametrize(
|
|
"X, y, lower_bound_accuracy",
|
|
[
|
|
(
|
|
*datasets.make_classification(n_samples=300, n_classes=2, random_state=0),
|
|
0.9,
|
|
),
|
|
(
|
|
*datasets.make_classification(
|
|
n_samples=1000, n_classes=3, n_informative=6, random_state=0
|
|
),
|
|
0.65,
|
|
),
|
|
(
|
|
iris.data,
|
|
iris.target * 2 + 1,
|
|
0.65,
|
|
),
|
|
(
|
|
*datasets.make_multilabel_classification(n_samples=300, random_state=0),
|
|
0.18,
|
|
),
|
|
],
|
|
)
|
|
def test_forest_classifier_oob(ForestClassifier, X, y, X_type, lower_bound_accuracy):
|
|
"""Check that OOB score is close to score on a test set."""
|
|
X = _convert_container(X, constructor_name=X_type)
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X,
|
|
y,
|
|
test_size=0.5,
|
|
random_state=0,
|
|
)
|
|
classifier = ForestClassifier(
|
|
n_estimators=40,
|
|
bootstrap=True,
|
|
oob_score=True,
|
|
random_state=0,
|
|
)
|
|
|
|
assert not hasattr(classifier, "oob_score_")
|
|
assert not hasattr(classifier, "oob_decision_function_")
|
|
|
|
classifier.fit(X_train, y_train)
|
|
test_score = classifier.score(X_test, y_test)
|
|
|
|
assert abs(test_score - classifier.oob_score_) <= 0.1
|
|
assert classifier.oob_score_ >= lower_bound_accuracy
|
|
|
|
assert hasattr(classifier, "oob_score_")
|
|
assert not hasattr(classifier, "oob_prediction_")
|
|
assert hasattr(classifier, "oob_decision_function_")
|
|
|
|
if y.ndim == 1:
|
|
expected_shape = (X_train.shape[0], len(set(y)))
|
|
else:
|
|
expected_shape = (X_train.shape[0], len(set(y[:, 0])), y.shape[1])
|
|
assert classifier.oob_decision_function_.shape == expected_shape
|
|
|
|
|
|
@pytest.mark.parametrize("ForestRegressor", FOREST_REGRESSORS.values())
|
|
@pytest.mark.parametrize("X_type", ["array", "sparse_csr", "sparse_csc"])
|
|
@pytest.mark.parametrize(
|
|
"X, y, lower_bound_r2",
|
|
[
|
|
(
|
|
*datasets.make_regression(
|
|
n_samples=500, n_features=10, n_targets=1, random_state=0
|
|
),
|
|
0.7,
|
|
),
|
|
(
|
|
*datasets.make_regression(
|
|
n_samples=500, n_features=10, n_targets=2, random_state=0
|
|
),
|
|
0.55,
|
|
),
|
|
],
|
|
)
|
|
def test_forest_regressor_oob(ForestRegressor, X, y, X_type, lower_bound_r2):
|
|
"""Check that forest-based regressor provide an OOB score close to the
|
|
score on a test set."""
|
|
X = _convert_container(X, constructor_name=X_type)
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X,
|
|
y,
|
|
test_size=0.5,
|
|
random_state=0,
|
|
)
|
|
regressor = ForestRegressor(
|
|
n_estimators=50,
|
|
bootstrap=True,
|
|
oob_score=True,
|
|
random_state=0,
|
|
)
|
|
|
|
assert not hasattr(regressor, "oob_score_")
|
|
assert not hasattr(regressor, "oob_prediction_")
|
|
|
|
regressor.fit(X_train, y_train)
|
|
test_score = regressor.score(X_test, y_test)
|
|
|
|
assert abs(test_score - regressor.oob_score_) <= 0.1
|
|
assert regressor.oob_score_ >= lower_bound_r2
|
|
|
|
assert hasattr(regressor, "oob_score_")
|
|
assert hasattr(regressor, "oob_prediction_")
|
|
assert not hasattr(regressor, "oob_decision_function_")
|
|
|
|
if y.ndim == 1:
|
|
expected_shape = (X_train.shape[0],)
|
|
else:
|
|
expected_shape = (X_train.shape[0], y.ndim)
|
|
assert regressor.oob_prediction_.shape == expected_shape
|
|
|
|
|
|
@pytest.mark.parametrize("ForestEstimator", FOREST_CLASSIFIERS_REGRESSORS.values())
|
|
def test_forest_oob_warning(ForestEstimator):
|
|
"""Check that a warning is raised when not enough estimator and the OOB
|
|
estimates will be inaccurate."""
|
|
estimator = ForestEstimator(
|
|
n_estimators=1,
|
|
oob_score=True,
|
|
bootstrap=True,
|
|
random_state=0,
|
|
)
|
|
with pytest.warns(UserWarning, match="Some inputs do not have OOB scores"):
|
|
estimator.fit(iris.data, iris.target)
|
|
|
|
|
|
@pytest.mark.parametrize("ForestEstimator", FOREST_CLASSIFIERS_REGRESSORS.values())
|
|
@pytest.mark.parametrize(
|
|
"X, y, params, err_msg",
|
|
[
|
|
(
|
|
iris.data,
|
|
iris.target,
|
|
{"oob_score": True, "bootstrap": False},
|
|
"Out of bag estimation only available if bootstrap=True",
|
|
),
|
|
(
|
|
iris.data,
|
|
rng.randint(low=0, high=5, size=(iris.data.shape[0], 2)),
|
|
{"oob_score": True, "bootstrap": True},
|
|
"The type of target cannot be used to compute OOB estimates",
|
|
),
|
|
],
|
|
)
|
|
def test_forest_oob_error(ForestEstimator, X, y, params, err_msg):
|
|
estimator = ForestEstimator(**params)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
@pytest.mark.parametrize("oob_score", [True, False])
|
|
def test_random_trees_embedding_raise_error_oob(oob_score):
|
|
with pytest.raises(TypeError, match="got an unexpected keyword argument"):
|
|
RandomTreesEmbedding(oob_score=oob_score)
|
|
with pytest.raises(NotImplementedError, match="OOB score not supported"):
|
|
RandomTreesEmbedding()._set_oob_score_and_attributes(X, y)
|
|
|
|
|
|
def check_gridsearch(name):
|
|
forest = FOREST_CLASSIFIERS[name]()
|
|
clf = GridSearchCV(forest, {"n_estimators": (1, 2), "max_depth": (1, 2)})
|
|
clf.fit(iris.data, iris.target)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_gridsearch(name):
|
|
# Check that base trees can be grid-searched.
|
|
check_gridsearch(name)
|
|
|
|
|
|
def check_parallel(name, X, y):
|
|
"""Check parallel computations in classification"""
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0)
|
|
|
|
forest.fit(X, y)
|
|
assert len(forest) == 10
|
|
|
|
forest.set_params(n_jobs=1)
|
|
y1 = forest.predict(X)
|
|
forest.set_params(n_jobs=2)
|
|
y2 = forest.predict(X)
|
|
assert_array_almost_equal(y1, y2, 3)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_parallel(name):
|
|
if name in FOREST_CLASSIFIERS:
|
|
X = iris.data
|
|
y = iris.target
|
|
elif name in FOREST_REGRESSORS:
|
|
X = X_reg
|
|
y = y_reg
|
|
|
|
check_parallel(name, X, y)
|
|
|
|
|
|
def check_pickle(name, X, y):
|
|
# Check pickability.
|
|
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
obj = ForestEstimator(random_state=0)
|
|
obj.fit(X, y)
|
|
score = obj.score(X, y)
|
|
pickle_object = pickle.dumps(obj)
|
|
|
|
obj2 = pickle.loads(pickle_object)
|
|
assert type(obj2) == obj.__class__
|
|
score2 = obj2.score(X, y)
|
|
assert score == score2
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_pickle(name):
|
|
if name in FOREST_CLASSIFIERS:
|
|
X = iris.data
|
|
y = iris.target
|
|
elif name in FOREST_REGRESSORS:
|
|
X = X_reg
|
|
y = y_reg
|
|
|
|
check_pickle(name, X[::2], y[::2])
|
|
|
|
|
|
def check_multioutput(name):
|
|
# Check estimators on multi-output problems.
|
|
|
|
X_train = [
|
|
[-2, -1],
|
|
[-1, -1],
|
|
[-1, -2],
|
|
[1, 1],
|
|
[1, 2],
|
|
[2, 1],
|
|
[-2, 1],
|
|
[-1, 1],
|
|
[-1, 2],
|
|
[2, -1],
|
|
[1, -1],
|
|
[1, -2],
|
|
]
|
|
y_train = [
|
|
[-1, 0],
|
|
[-1, 0],
|
|
[-1, 0],
|
|
[1, 1],
|
|
[1, 1],
|
|
[1, 1],
|
|
[-1, 2],
|
|
[-1, 2],
|
|
[-1, 2],
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
]
|
|
X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
|
|
y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]]
|
|
|
|
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
|
|
y_pred = est.fit(X_train, y_train).predict(X_test)
|
|
assert_array_almost_equal(y_pred, y_test)
|
|
|
|
if name in FOREST_CLASSIFIERS:
|
|
with np.errstate(divide="ignore"):
|
|
proba = est.predict_proba(X_test)
|
|
assert len(proba) == 2
|
|
assert proba[0].shape == (4, 2)
|
|
assert proba[1].shape == (4, 4)
|
|
|
|
log_proba = est.predict_log_proba(X_test)
|
|
assert len(log_proba) == 2
|
|
assert log_proba[0].shape == (4, 2)
|
|
assert log_proba[1].shape == (4, 4)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_multioutput(name):
|
|
check_multioutput(name)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_multioutput_string(name):
|
|
# Check estimators on multi-output problems with string outputs.
|
|
|
|
X_train = [
|
|
[-2, -1],
|
|
[-1, -1],
|
|
[-1, -2],
|
|
[1, 1],
|
|
[1, 2],
|
|
[2, 1],
|
|
[-2, 1],
|
|
[-1, 1],
|
|
[-1, 2],
|
|
[2, -1],
|
|
[1, -1],
|
|
[1, -2],
|
|
]
|
|
y_train = [
|
|
["red", "blue"],
|
|
["red", "blue"],
|
|
["red", "blue"],
|
|
["green", "green"],
|
|
["green", "green"],
|
|
["green", "green"],
|
|
["red", "purple"],
|
|
["red", "purple"],
|
|
["red", "purple"],
|
|
["green", "yellow"],
|
|
["green", "yellow"],
|
|
["green", "yellow"],
|
|
]
|
|
X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
|
|
y_test = [
|
|
["red", "blue"],
|
|
["green", "green"],
|
|
["red", "purple"],
|
|
["green", "yellow"],
|
|
]
|
|
|
|
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
|
|
y_pred = est.fit(X_train, y_train).predict(X_test)
|
|
assert_array_equal(y_pred, y_test)
|
|
|
|
with np.errstate(divide="ignore"):
|
|
proba = est.predict_proba(X_test)
|
|
assert len(proba) == 2
|
|
assert proba[0].shape == (4, 2)
|
|
assert proba[1].shape == (4, 4)
|
|
|
|
log_proba = est.predict_log_proba(X_test)
|
|
assert len(log_proba) == 2
|
|
assert log_proba[0].shape == (4, 2)
|
|
assert log_proba[1].shape == (4, 4)
|
|
|
|
|
|
def check_classes_shape(name):
|
|
# Test that n_classes_ and classes_ have proper shape.
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
|
|
# Classification, single output
|
|
clf = ForestClassifier(random_state=0).fit(X, y)
|
|
|
|
assert clf.n_classes_ == 2
|
|
assert_array_equal(clf.classes_, [-1, 1])
|
|
|
|
# Classification, multi-output
|
|
_y = np.vstack((y, np.array(y) * 2)).T
|
|
clf = ForestClassifier(random_state=0).fit(X, _y)
|
|
|
|
assert_array_equal(clf.n_classes_, [2, 2])
|
|
assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]])
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_classes_shape(name):
|
|
check_classes_shape(name)
|
|
|
|
|
|
def test_random_trees_dense_type():
|
|
# Test that the `sparse_output` parameter of RandomTreesEmbedding
|
|
# works by returning a dense array.
|
|
|
|
# Create the RTE with sparse=False
|
|
hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False)
|
|
X, y = datasets.make_circles(factor=0.5)
|
|
X_transformed = hasher.fit_transform(X)
|
|
|
|
# Assert that type is ndarray, not scipy.sparse.csr_matrix
|
|
assert type(X_transformed) == np.ndarray
|
|
|
|
|
|
def test_random_trees_dense_equal():
|
|
# Test that the `sparse_output` parameter of RandomTreesEmbedding
|
|
# works by returning the same array for both argument values.
|
|
|
|
# Create the RTEs
|
|
hasher_dense = RandomTreesEmbedding(
|
|
n_estimators=10, sparse_output=False, random_state=0
|
|
)
|
|
hasher_sparse = RandomTreesEmbedding(
|
|
n_estimators=10, sparse_output=True, random_state=0
|
|
)
|
|
X, y = datasets.make_circles(factor=0.5)
|
|
X_transformed_dense = hasher_dense.fit_transform(X)
|
|
X_transformed_sparse = hasher_sparse.fit_transform(X)
|
|
|
|
# Assert that dense and sparse hashers have same array.
|
|
assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense)
|
|
|
|
|
|
# Ignore warnings from switching to more power iterations in randomized_svd
|
|
@ignore_warnings
|
|
def test_random_hasher():
|
|
# test random forest hashing on circles dataset
|
|
# make sure that it is linearly separable.
|
|
# even after projected to two SVD dimensions
|
|
# Note: Not all random_states produce perfect results.
|
|
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
|
|
X, y = datasets.make_circles(factor=0.5)
|
|
X_transformed = hasher.fit_transform(X)
|
|
|
|
# test fit and transform:
|
|
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
|
|
assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray())
|
|
|
|
# one leaf active per data point per forest
|
|
assert X_transformed.shape[0] == X.shape[0]
|
|
assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators)
|
|
svd = TruncatedSVD(n_components=2)
|
|
X_reduced = svd.fit_transform(X_transformed)
|
|
linear_clf = LinearSVC()
|
|
linear_clf.fit(X_reduced, y)
|
|
assert linear_clf.score(X_reduced, y) == 1.0
|
|
|
|
|
|
def test_random_hasher_sparse_data():
|
|
X, y = datasets.make_multilabel_classification(random_state=0)
|
|
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
|
|
X_transformed = hasher.fit_transform(X)
|
|
X_transformed_sparse = hasher.fit_transform(csc_matrix(X))
|
|
assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray())
|
|
|
|
|
|
def test_parallel_train():
|
|
rng = check_random_state(12321)
|
|
n_samples, n_features = 80, 30
|
|
X_train = rng.randn(n_samples, n_features)
|
|
y_train = rng.randint(0, 2, n_samples)
|
|
|
|
clfs = [
|
|
RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(
|
|
X_train, y_train
|
|
)
|
|
for n_jobs in [1, 2, 3, 8, 16, 32]
|
|
]
|
|
|
|
X_test = rng.randn(n_samples, n_features)
|
|
probas = [clf.predict_proba(X_test) for clf in clfs]
|
|
for proba1, proba2 in zip(probas, probas[1:]):
|
|
assert_array_almost_equal(proba1, proba2)
|
|
|
|
|
|
def test_distribution():
|
|
rng = check_random_state(12321)
|
|
|
|
# Single variable with 4 values
|
|
X = rng.randint(0, 4, size=(1000, 1))
|
|
y = rng.rand(1000)
|
|
n_trees = 500
|
|
|
|
reg = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y)
|
|
|
|
uniques = defaultdict(int)
|
|
for tree in reg.estimators_:
|
|
tree = "".join(
|
|
("%d,%d/" % (f, int(t)) if f >= 0 else "-")
|
|
for f, t in zip(tree.tree_.feature, tree.tree_.threshold)
|
|
)
|
|
|
|
uniques[tree] += 1
|
|
|
|
uniques = sorted([(1.0 * count / n_trees, tree) for tree, count in uniques.items()])
|
|
|
|
# On a single variable problem where X_0 has 4 equiprobable values, there
|
|
# are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of
|
|
# them has probability 1/3 while the 4 others have probability 1/6.
|
|
|
|
assert len(uniques) == 5
|
|
assert 0.20 > uniques[0][0] # Rough approximation of 1/6.
|
|
assert 0.20 > uniques[1][0]
|
|
assert 0.20 > uniques[2][0]
|
|
assert 0.20 > uniques[3][0]
|
|
assert uniques[4][0] > 0.3
|
|
assert uniques[4][1] == "0,1/0,0/--0,2/--"
|
|
|
|
# Two variables, one with 2 values, one with 3 values
|
|
X = np.empty((1000, 2))
|
|
X[:, 0] = np.random.randint(0, 2, 1000)
|
|
X[:, 1] = np.random.randint(0, 3, 1000)
|
|
y = rng.rand(1000)
|
|
|
|
reg = ExtraTreesRegressor(max_features=1, random_state=1).fit(X, y)
|
|
|
|
uniques = defaultdict(int)
|
|
for tree in reg.estimators_:
|
|
tree = "".join(
|
|
("%d,%d/" % (f, int(t)) if f >= 0 else "-")
|
|
for f, t in zip(tree.tree_.feature, tree.tree_.threshold)
|
|
)
|
|
|
|
uniques[tree] += 1
|
|
|
|
uniques = [(count, tree) for tree, count in uniques.items()]
|
|
assert len(uniques) == 8
|
|
|
|
|
|
def check_max_leaf_nodes_max_depth(name):
|
|
X, y = hastie_X, hastie_y
|
|
|
|
# Test precedence of max_leaf_nodes over max_depth.
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
est = ForestEstimator(
|
|
max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0
|
|
).fit(X, y)
|
|
assert est.estimators_[0].get_depth() == 1
|
|
|
|
est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y)
|
|
assert est.estimators_[0].get_depth() == 1
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_max_leaf_nodes_max_depth(name):
|
|
check_max_leaf_nodes_max_depth(name)
|
|
|
|
|
|
def check_min_samples_split(name):
|
|
X, y = hastie_X, hastie_y
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
|
|
est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0)
|
|
est.fit(X, y)
|
|
node_idx = est.estimators_[0].tree_.children_left != -1
|
|
node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]
|
|
|
|
assert np.min(node_samples) > len(X) * 0.5 - 1, "Failed with {0}".format(name)
|
|
|
|
est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0)
|
|
est.fit(X, y)
|
|
node_idx = est.estimators_[0].tree_.children_left != -1
|
|
node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]
|
|
|
|
assert np.min(node_samples) > len(X) * 0.5 - 1, "Failed with {0}".format(name)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_min_samples_split(name):
|
|
check_min_samples_split(name)
|
|
|
|
|
|
def check_min_samples_leaf(name):
|
|
X, y = hastie_X, hastie_y
|
|
|
|
# Test if leaves contain more than leaf_count training examples
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
|
|
est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0)
|
|
est.fit(X, y)
|
|
out = est.estimators_[0].tree_.apply(X)
|
|
node_counts = np.bincount(out)
|
|
# drop inner nodes
|
|
leaf_count = node_counts[node_counts != 0]
|
|
assert np.min(leaf_count) > 4, "Failed with {0}".format(name)
|
|
|
|
est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0)
|
|
est.fit(X, y)
|
|
out = est.estimators_[0].tree_.apply(X)
|
|
node_counts = np.bincount(out)
|
|
# drop inner nodes
|
|
leaf_count = node_counts[node_counts != 0]
|
|
assert np.min(leaf_count) > len(X) * 0.25 - 1, "Failed with {0}".format(name)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_min_samples_leaf(name):
|
|
check_min_samples_leaf(name)
|
|
|
|
|
|
def check_min_weight_fraction_leaf(name):
|
|
X, y = hastie_X, hastie_y
|
|
|
|
# Test if leaves contain at least min_weight_fraction_leaf of the
|
|
# training set
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
rng = np.random.RandomState(0)
|
|
weights = rng.rand(X.shape[0])
|
|
total_weight = np.sum(weights)
|
|
|
|
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
|
|
# by setting max_leaf_nodes
|
|
for frac in np.linspace(0, 0.5, 6):
|
|
est = ForestEstimator(
|
|
min_weight_fraction_leaf=frac, n_estimators=1, random_state=0
|
|
)
|
|
if "RandomForest" in name:
|
|
est.bootstrap = False
|
|
|
|
est.fit(X, y, sample_weight=weights)
|
|
out = est.estimators_[0].tree_.apply(X)
|
|
node_weights = np.bincount(out, weights=weights)
|
|
# drop inner nodes
|
|
leaf_weights = node_weights[node_weights != 0]
|
|
assert (
|
|
np.min(leaf_weights) >= total_weight * est.min_weight_fraction_leaf
|
|
), "Failed with {0} min_weight_fraction_leaf={1}".format(
|
|
name, est.min_weight_fraction_leaf
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_min_weight_fraction_leaf(name):
|
|
check_min_weight_fraction_leaf(name)
|
|
|
|
|
|
def check_sparse_input(name, X, X_sparse, y):
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
|
|
dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y)
|
|
sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y)
|
|
|
|
assert_array_almost_equal(sparse.apply(X), dense.apply(X))
|
|
|
|
if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS:
|
|
assert_array_almost_equal(sparse.predict(X), dense.predict(X))
|
|
assert_array_almost_equal(
|
|
sparse.feature_importances_, dense.feature_importances_
|
|
)
|
|
|
|
if name in FOREST_CLASSIFIERS:
|
|
assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X))
|
|
assert_array_almost_equal(
|
|
sparse.predict_log_proba(X), dense.predict_log_proba(X)
|
|
)
|
|
|
|
if name in FOREST_TRANSFORMERS:
|
|
assert_array_almost_equal(
|
|
sparse.transform(X).toarray(), dense.transform(X).toarray()
|
|
)
|
|
assert_array_almost_equal(
|
|
sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
@pytest.mark.parametrize("sparse_matrix", (csr_matrix, csc_matrix, coo_matrix))
|
|
def test_sparse_input(name, sparse_matrix):
|
|
X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50)
|
|
|
|
check_sparse_input(name, X, sparse_matrix(X), y)
|
|
|
|
|
|
def check_memory_layout(name, dtype):
|
|
# Check that it works no matter the memory layout
|
|
|
|
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
|
|
|
|
# Nothing
|
|
X = np.asarray(iris.data, dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
# C-order
|
|
X = np.asarray(iris.data, order="C", dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
# F-order
|
|
X = np.asarray(iris.data, order="F", dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
# Contiguous
|
|
X = np.ascontiguousarray(iris.data, dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
if est.estimator.splitter in SPARSE_SPLITTERS:
|
|
# csr matrix
|
|
X = csr_matrix(iris.data, dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
# csc_matrix
|
|
X = csc_matrix(iris.data, dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
# coo_matrix
|
|
X = coo_matrix(iris.data, dtype=dtype)
|
|
y = iris.target
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
# Strided
|
|
X = np.asarray(iris.data[::3], dtype=dtype)
|
|
y = iris.target[::3]
|
|
assert_array_almost_equal(est.fit(X, y).predict(X), y)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
@pytest.mark.parametrize("dtype", (np.float64, np.float32))
|
|
def test_memory_layout(name, dtype):
|
|
check_memory_layout(name, dtype)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_1d_input(name, X, X_2d, y):
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
with pytest.raises(ValueError):
|
|
ForestEstimator(n_estimators=1, random_state=0).fit(X, y)
|
|
|
|
est = ForestEstimator(random_state=0)
|
|
est.fit(X_2d, y)
|
|
|
|
if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS:
|
|
with pytest.raises(ValueError):
|
|
est.predict(X)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_1d_input(name):
|
|
X = iris.data[:, 0]
|
|
X_2d = iris.data[:, 0].reshape((-1, 1))
|
|
y = iris.target
|
|
|
|
with ignore_warnings():
|
|
check_1d_input(name, X, X_2d, y)
|
|
|
|
|
|
def check_class_weights(name):
|
|
# Check class_weights resemble sample_weights behavior.
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
|
|
# Iris is balanced, so no effect expected for using 'balanced' weights
|
|
clf1 = ForestClassifier(random_state=0)
|
|
clf1.fit(iris.data, iris.target)
|
|
clf2 = ForestClassifier(class_weight="balanced", random_state=0)
|
|
clf2.fit(iris.data, iris.target)
|
|
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
|
|
|
|
# Make a multi-output problem with three copies of Iris
|
|
iris_multi = np.vstack((iris.target, iris.target, iris.target)).T
|
|
# Create user-defined weights that should balance over the outputs
|
|
clf3 = ForestClassifier(
|
|
class_weight=[
|
|
{0: 2.0, 1: 2.0, 2: 1.0},
|
|
{0: 2.0, 1: 1.0, 2: 2.0},
|
|
{0: 1.0, 1: 2.0, 2: 2.0},
|
|
],
|
|
random_state=0,
|
|
)
|
|
clf3.fit(iris.data, iris_multi)
|
|
assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_)
|
|
# Check against multi-output "balanced" which should also have no effect
|
|
clf4 = ForestClassifier(class_weight="balanced", random_state=0)
|
|
clf4.fit(iris.data, iris_multi)
|
|
assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_)
|
|
|
|
# Inflate importance of class 1, check against user-defined weights
|
|
sample_weight = np.ones(iris.target.shape)
|
|
sample_weight[iris.target == 1] *= 100
|
|
class_weight = {0: 1.0, 1: 100.0, 2: 1.0}
|
|
clf1 = ForestClassifier(random_state=0)
|
|
clf1.fit(iris.data, iris.target, sample_weight)
|
|
clf2 = ForestClassifier(class_weight=class_weight, random_state=0)
|
|
clf2.fit(iris.data, iris.target)
|
|
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
|
|
|
|
# Check that sample_weight and class_weight are multiplicative
|
|
clf1 = ForestClassifier(random_state=0)
|
|
clf1.fit(iris.data, iris.target, sample_weight**2)
|
|
clf2 = ForestClassifier(class_weight=class_weight, random_state=0)
|
|
clf2.fit(iris.data, iris.target, sample_weight)
|
|
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_class_weights(name):
|
|
check_class_weights(name)
|
|
|
|
|
|
def check_class_weight_balanced_and_bootstrap_multi_output(name):
|
|
# Test class_weight works for multi-output"""
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
_y = np.vstack((y, np.array(y) * 2)).T
|
|
clf = ForestClassifier(class_weight="balanced", random_state=0)
|
|
clf.fit(X, _y)
|
|
clf = ForestClassifier(
|
|
class_weight=[{-1: 0.5, 1: 1.0}, {-2: 1.0, 2: 1.0}], random_state=0
|
|
)
|
|
clf.fit(X, _y)
|
|
# smoke test for balanced subsample
|
|
clf = ForestClassifier(class_weight="balanced_subsample", random_state=0)
|
|
clf.fit(X, _y)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_class_weight_balanced_and_bootstrap_multi_output(name):
|
|
check_class_weight_balanced_and_bootstrap_multi_output(name)
|
|
|
|
|
|
def check_class_weight_errors(name):
|
|
# Test if class_weight raises errors and warnings when expected.
|
|
ForestClassifier = FOREST_CLASSIFIERS[name]
|
|
_y = np.vstack((y, np.array(y) * 2)).T
|
|
|
|
# Warning warm_start with preset
|
|
clf = ForestClassifier(class_weight="balanced", warm_start=True, random_state=0)
|
|
clf.fit(X, y)
|
|
|
|
warn_msg = (
|
|
"Warm-start fitting without increasing n_estimators does not fit new trees."
|
|
)
|
|
with pytest.warns(UserWarning, match=warn_msg):
|
|
clf.fit(X, _y)
|
|
|
|
# Incorrect length list for multi-output
|
|
clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.0}], random_state=0)
|
|
with pytest.raises(ValueError):
|
|
clf.fit(X, _y)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_class_weight_errors(name):
|
|
check_class_weight_errors(name)
|
|
|
|
|
|
def check_warm_start(name, random_state=42):
|
|
# Test if fitting incrementally with warm start gives a forest of the
|
|
# right size and the same results as a normal fit.
|
|
X, y = hastie_X, hastie_y
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
est_ws = None
|
|
for n_estimators in [5, 10]:
|
|
if est_ws is None:
|
|
est_ws = ForestEstimator(
|
|
n_estimators=n_estimators, random_state=random_state, warm_start=True
|
|
)
|
|
else:
|
|
est_ws.set_params(n_estimators=n_estimators)
|
|
est_ws.fit(X, y)
|
|
assert len(est_ws) == n_estimators
|
|
|
|
est_no_ws = ForestEstimator(
|
|
n_estimators=10, random_state=random_state, warm_start=False
|
|
)
|
|
est_no_ws.fit(X, y)
|
|
|
|
assert set([tree.random_state for tree in est_ws]) == set(
|
|
[tree.random_state for tree in est_no_ws]
|
|
)
|
|
|
|
assert_array_equal(
|
|
est_ws.apply(X), est_no_ws.apply(X), err_msg="Failed with {0}".format(name)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_warm_start(name):
|
|
check_warm_start(name)
|
|
|
|
|
|
def check_warm_start_clear(name):
|
|
# Test if fit clears state and grows a new forest when warm_start==False.
|
|
X, y = hastie_X, hastie_y
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1)
|
|
est.fit(X, y)
|
|
|
|
est_2 = ForestEstimator(
|
|
n_estimators=5, max_depth=1, warm_start=True, random_state=2
|
|
)
|
|
est_2.fit(X, y) # inits state
|
|
est_2.set_params(warm_start=False, random_state=1)
|
|
est_2.fit(X, y) # clears old state and equals est
|
|
|
|
assert_array_almost_equal(est_2.apply(X), est.apply(X))
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_warm_start_clear(name):
|
|
check_warm_start_clear(name)
|
|
|
|
|
|
def check_warm_start_smaller_n_estimators(name):
|
|
# Test if warm start second fit with smaller n_estimators raises error.
|
|
X, y = hastie_X, hastie_y
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True)
|
|
est.fit(X, y)
|
|
est.set_params(n_estimators=4)
|
|
with pytest.raises(ValueError):
|
|
est.fit(X, y)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_warm_start_smaller_n_estimators(name):
|
|
check_warm_start_smaller_n_estimators(name)
|
|
|
|
|
|
def check_warm_start_equal_n_estimators(name):
|
|
# Test if warm start with equal n_estimators does nothing and returns the
|
|
# same forest and raises a warning.
|
|
X, y = hastie_X, hastie_y
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
est = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1)
|
|
est.fit(X, y)
|
|
|
|
est_2 = ForestEstimator(
|
|
n_estimators=5, max_depth=3, warm_start=True, random_state=1
|
|
)
|
|
est_2.fit(X, y)
|
|
# Now est_2 equals est.
|
|
|
|
est_2.set_params(random_state=2)
|
|
warn_msg = (
|
|
"Warm-start fitting without increasing n_estimators does not fit new trees."
|
|
)
|
|
with pytest.warns(UserWarning, match=warn_msg):
|
|
est_2.fit(X, y)
|
|
# If we had fit the trees again we would have got a different forest as we
|
|
# changed the random state.
|
|
assert_array_equal(est.apply(X), est_2.apply(X))
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_ESTIMATORS)
|
|
def test_warm_start_equal_n_estimators(name):
|
|
check_warm_start_equal_n_estimators(name)
|
|
|
|
|
|
def check_warm_start_oob(name):
|
|
# Test that the warm start computes oob score when asked.
|
|
X, y = hastie_X, hastie_y
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
# Use 15 estimators to avoid 'some inputs do not have OOB scores' warning.
|
|
est = ForestEstimator(
|
|
n_estimators=15,
|
|
max_depth=3,
|
|
warm_start=False,
|
|
random_state=1,
|
|
bootstrap=True,
|
|
oob_score=True,
|
|
)
|
|
est.fit(X, y)
|
|
|
|
est_2 = ForestEstimator(
|
|
n_estimators=5,
|
|
max_depth=3,
|
|
warm_start=False,
|
|
random_state=1,
|
|
bootstrap=True,
|
|
oob_score=False,
|
|
)
|
|
est_2.fit(X, y)
|
|
|
|
est_2.set_params(warm_start=True, oob_score=True, n_estimators=15)
|
|
est_2.fit(X, y)
|
|
|
|
assert hasattr(est_2, "oob_score_")
|
|
assert est.oob_score_ == est_2.oob_score_
|
|
|
|
# Test that oob_score is computed even if we don't need to train
|
|
# additional trees.
|
|
est_3 = ForestEstimator(
|
|
n_estimators=15,
|
|
max_depth=3,
|
|
warm_start=True,
|
|
random_state=1,
|
|
bootstrap=True,
|
|
oob_score=False,
|
|
)
|
|
est_3.fit(X, y)
|
|
assert not hasattr(est_3, "oob_score_")
|
|
|
|
est_3.set_params(oob_score=True)
|
|
ignore_warnings(est_3.fit)(X, y)
|
|
|
|
assert est.oob_score_ == est_3.oob_score_
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_warm_start_oob(name):
|
|
check_warm_start_oob(name)
|
|
|
|
|
|
def test_dtype_convert(n_classes=15):
|
|
classifier = RandomForestClassifier(random_state=0, bootstrap=False)
|
|
|
|
X = np.eye(n_classes)
|
|
y = [ch for ch in "ABCDEFGHIJKLMNOPQRSTU"[:n_classes]]
|
|
|
|
result = classifier.fit(X, y).predict(X)
|
|
assert_array_equal(classifier.classes_, y)
|
|
assert_array_equal(result, y)
|
|
|
|
|
|
def check_decision_path(name):
|
|
X, y = hastie_X, hastie_y
|
|
n_samples = X.shape[0]
|
|
ForestEstimator = FOREST_ESTIMATORS[name]
|
|
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1)
|
|
est.fit(X, y)
|
|
indicator, n_nodes_ptr = est.decision_path(X)
|
|
|
|
assert indicator.shape[1] == n_nodes_ptr[-1]
|
|
assert indicator.shape[0] == n_samples
|
|
assert_array_equal(
|
|
np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]
|
|
)
|
|
|
|
# Assert that leaves index are correct
|
|
leaves = est.apply(X)
|
|
for est_id in range(leaves.shape[1]):
|
|
leave_indicator = [
|
|
indicator[i, n_nodes_ptr[est_id] + j]
|
|
for i, j in enumerate(leaves[:, est_id])
|
|
]
|
|
assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples))
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_decision_path(name):
|
|
check_decision_path(name)
|
|
|
|
|
|
def test_min_impurity_decrease():
|
|
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
|
|
all_estimators = [
|
|
RandomForestClassifier,
|
|
RandomForestRegressor,
|
|
ExtraTreesClassifier,
|
|
ExtraTreesRegressor,
|
|
]
|
|
|
|
for Estimator in all_estimators:
|
|
est = Estimator(min_impurity_decrease=0.1)
|
|
est.fit(X, y)
|
|
for tree in est.estimators_:
|
|
# Simply check if the parameter is passed on correctly. Tree tests
|
|
# will suffice for the actual working of this param
|
|
assert tree.min_impurity_decrease == 0.1
|
|
|
|
|
|
def test_poisson_y_positive_check():
|
|
est = RandomForestRegressor(criterion="poisson")
|
|
X = np.zeros((3, 3))
|
|
|
|
y = [-1, 1, 3]
|
|
err_msg = (
|
|
r"Some value\(s\) of y are negative which is "
|
|
r"not allowed for Poisson regression."
|
|
)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
est.fit(X, y)
|
|
|
|
y = [0, 0, 0]
|
|
err_msg = (
|
|
r"Sum of y is not strictly positive which "
|
|
r"is necessary for Poisson regression."
|
|
)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
est.fit(X, y)
|
|
|
|
|
|
# mypy error: Variable "DEFAULT_JOBLIB_BACKEND" is not valid type
|
|
class MyBackend(DEFAULT_JOBLIB_BACKEND): # type: ignore
|
|
def __init__(self, *args, **kwargs):
|
|
self.count = 0
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def start_call(self):
|
|
self.count += 1
|
|
return super().start_call()
|
|
|
|
|
|
joblib.register_parallel_backend("testing", MyBackend)
|
|
|
|
|
|
@skip_if_no_parallel
|
|
def test_backend_respected():
|
|
clf = RandomForestClassifier(n_estimators=10, n_jobs=2)
|
|
|
|
with joblib.parallel_backend("testing") as (ba, n_jobs):
|
|
clf.fit(X, y)
|
|
|
|
assert ba.count > 0
|
|
|
|
# predict_proba requires shared memory. Ensure that's honored.
|
|
with joblib.parallel_backend("testing") as (ba, _):
|
|
clf.predict_proba(X)
|
|
|
|
assert ba.count == 0
|
|
|
|
|
|
def test_forest_feature_importances_sum():
|
|
X, y = make_classification(
|
|
n_samples=15, n_informative=3, random_state=1, n_classes=3
|
|
)
|
|
clf = RandomForestClassifier(
|
|
min_samples_leaf=5, random_state=42, n_estimators=200
|
|
).fit(X, y)
|
|
assert math.isclose(1, clf.feature_importances_.sum(), abs_tol=1e-7)
|
|
|
|
|
|
def test_forest_degenerate_feature_importances():
|
|
# build a forest of single node trees. See #13636
|
|
X = np.zeros((10, 10))
|
|
y = np.ones((10,))
|
|
gbr = RandomForestRegressor(n_estimators=10).fit(X, y)
|
|
assert_array_equal(gbr.feature_importances_, np.zeros(10, dtype=np.float64))
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_max_samples_bootstrap(name):
|
|
# Check invalid `max_samples` values
|
|
est = FOREST_CLASSIFIERS_REGRESSORS[name](bootstrap=False, max_samples=0.5)
|
|
err_msg = (
|
|
r"`max_sample` cannot be set if `bootstrap=False`. "
|
|
r"Either switch to `bootstrap=True` or set "
|
|
r"`max_sample=None`."
|
|
)
|
|
with pytest.raises(ValueError, match=err_msg):
|
|
est.fit(X, y)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS_REGRESSORS)
|
|
def test_large_max_samples_exception(name):
|
|
# Check invalid `max_samples`
|
|
est = FOREST_CLASSIFIERS_REGRESSORS[name](bootstrap=True, max_samples=int(1e9))
|
|
match = "`max_samples` must be <= n_samples=6 but got value 1000000000"
|
|
with pytest.raises(ValueError, match=match):
|
|
est.fit(X, y)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_REGRESSORS)
|
|
def test_max_samples_boundary_regressors(name):
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X_reg, y_reg, train_size=0.7, test_size=0.3, random_state=0
|
|
)
|
|
|
|
ms_1_model = FOREST_REGRESSORS[name](
|
|
bootstrap=True, max_samples=1.0, random_state=0
|
|
)
|
|
ms_1_predict = ms_1_model.fit(X_train, y_train).predict(X_test)
|
|
|
|
ms_None_model = FOREST_REGRESSORS[name](
|
|
bootstrap=True, max_samples=None, random_state=0
|
|
)
|
|
ms_None_predict = ms_None_model.fit(X_train, y_train).predict(X_test)
|
|
|
|
ms_1_ms = mean_squared_error(ms_1_predict, y_test)
|
|
ms_None_ms = mean_squared_error(ms_None_predict, y_test)
|
|
|
|
assert ms_1_ms == pytest.approx(ms_None_ms)
|
|
|
|
|
|
@pytest.mark.parametrize("name", FOREST_CLASSIFIERS)
|
|
def test_max_samples_boundary_classifiers(name):
|
|
X_train, X_test, y_train, _ = train_test_split(
|
|
X_large, y_large, random_state=0, stratify=y_large
|
|
)
|
|
|
|
ms_1_model = FOREST_CLASSIFIERS[name](
|
|
bootstrap=True, max_samples=1.0, random_state=0
|
|
)
|
|
ms_1_proba = ms_1_model.fit(X_train, y_train).predict_proba(X_test)
|
|
|
|
ms_None_model = FOREST_CLASSIFIERS[name](
|
|
bootstrap=True, max_samples=None, random_state=0
|
|
)
|
|
ms_None_proba = ms_None_model.fit(X_train, y_train).predict_proba(X_test)
|
|
|
|
np.testing.assert_allclose(ms_1_proba, ms_None_proba)
|
|
|
|
|
|
def test_forest_y_sparse():
|
|
X = [[1, 2, 3]]
|
|
y = csr_matrix([4, 5, 6])
|
|
est = RandomForestClassifier()
|
|
msg = "sparse multilabel-indicator for y is not supported."
|
|
with pytest.raises(ValueError, match=msg):
|
|
est.fit(X, y)
|
|
|
|
|
|
@pytest.mark.parametrize("ForestClass", [RandomForestClassifier, RandomForestRegressor])
|
|
def test_little_tree_with_small_max_samples(ForestClass):
|
|
rng = np.random.RandomState(1)
|
|
|
|
X = rng.randn(10000, 2)
|
|
y = rng.randn(10000) > 0
|
|
|
|
# First fit with no restriction on max samples
|
|
est1 = ForestClass(
|
|
n_estimators=1,
|
|
random_state=rng,
|
|
max_samples=None,
|
|
)
|
|
|
|
# Second fit with max samples restricted to just 2
|
|
est2 = ForestClass(
|
|
n_estimators=1,
|
|
random_state=rng,
|
|
max_samples=2,
|
|
)
|
|
|
|
est1.fit(X, y)
|
|
est2.fit(X, y)
|
|
|
|
tree1 = est1.estimators_[0].tree_
|
|
tree2 = est2.estimators_[0].tree_
|
|
|
|
msg = "Tree without `max_samples` restriction should have more nodes"
|
|
assert tree1.node_count > tree2.node_count, msg
|
|
|
|
|
|
# TODO: Remove in v1.3
|
|
@pytest.mark.parametrize(
|
|
"Estimator",
|
|
[
|
|
ExtraTreesClassifier,
|
|
ExtraTreesRegressor,
|
|
RandomForestClassifier,
|
|
RandomForestRegressor,
|
|
],
|
|
)
|
|
def test_max_features_deprecation(Estimator):
|
|
"""Check warning raised for max_features="auto" deprecation."""
|
|
X = np.array([[1, 2], [3, 4]])
|
|
y = np.array([1, 0])
|
|
est = Estimator(max_features="auto")
|
|
|
|
err_msg = (
|
|
r"`max_features='auto'` has been deprecated in 1.1 "
|
|
r"and will be removed in 1.3. To keep the past behaviour, "
|
|
r"explicitly set `max_features=(1.0|'sqrt')` or remove this "
|
|
r"parameter as it is also the default value for RandomForest"
|
|
r"(Regressors|Classifiers) and ExtraTrees(Regressors|"
|
|
r"Classifiers)\."
|
|
)
|
|
|
|
with pytest.warns(FutureWarning, match=err_msg):
|
|
est.fit(X, y)
|
|
|
|
|
|
@pytest.mark.parametrize("Forest", FOREST_REGRESSORS)
|
|
def test_mse_criterion_object_segfault_smoke_test(Forest):
|
|
# This is a smoke test to ensure that passing a mutable criterion
|
|
# does not cause a segfault when fitting with concurrent threads.
|
|
# Non-regression test for:
|
|
# https://github.com/scikit-learn/scikit-learn/issues/12623
|
|
from sklearn.tree._criterion import MSE
|
|
|
|
y = y_reg.reshape(-1, 1)
|
|
n_samples, n_outputs = y.shape
|
|
mse_criterion = MSE(n_outputs, n_samples)
|
|
est = FOREST_REGRESSORS[Forest](n_estimators=2, n_jobs=2, criterion=mse_criterion)
|
|
|
|
est.fit(X_reg, y)
|
|
|
|
|
|
def test_random_trees_embedding_feature_names_out():
|
|
"""Check feature names out for Random Trees Embedding."""
|
|
random_state = np.random.RandomState(0)
|
|
X = np.abs(random_state.randn(100, 4))
|
|
hasher = RandomTreesEmbedding(
|
|
n_estimators=2, max_depth=2, sparse_output=False, random_state=0
|
|
).fit(X)
|
|
names = hasher.get_feature_names_out()
|
|
expected_names = [
|
|
f"randomtreesembedding_{tree}_{leaf}"
|
|
# Note: nodes with indices 0, 1 and 4 are internal split nodes and
|
|
# therefore do not appear in the expected output feature names.
|
|
for tree, leaf in [
|
|
(0, 2),
|
|
(0, 3),
|
|
(0, 5),
|
|
(0, 6),
|
|
(1, 2),
|
|
(1, 3),
|
|
(1, 5),
|
|
(1, 6),
|
|
]
|
|
]
|
|
assert_array_equal(expected_names, names)
|
|
|
|
|
|
# TODO(1.4): remove in 1.4
|
|
@pytest.mark.parametrize(
|
|
"name",
|
|
FOREST_ESTIMATORS,
|
|
)
|
|
def test_base_estimator_property_deprecated(name):
|
|
X = np.array([[1, 2], [3, 4]])
|
|
y = np.array([1, 0])
|
|
model = FOREST_ESTIMATORS[name]()
|
|
model.fit(X, y)
|
|
|
|
warn_msg = (
|
|
"Attribute `base_estimator_` was deprecated in version 1.2 and "
|
|
"will be removed in 1.4. Use `estimator_` instead."
|
|
)
|
|
with pytest.warns(FutureWarning, match=warn_msg):
|
|
model.base_estimator_
|
|
|
|
|
|
def test_read_only_buffer(monkeypatch):
|
|
"""RandomForestClassifier must work on readonly sparse data.
|
|
|
|
Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/25333
|
|
"""
|
|
monkeypatch.setattr(
|
|
sklearn.ensemble._forest,
|
|
"Parallel",
|
|
partial(Parallel, max_nbytes=100),
|
|
)
|
|
rng = np.random.RandomState(seed=0)
|
|
|
|
X, y = make_classification(n_samples=100, n_features=200, random_state=rng)
|
|
X = csr_matrix(X, copy=True)
|
|
|
|
clf = RandomForestClassifier(n_jobs=2, random_state=rng)
|
|
cross_val_score(clf, X, y, cv=2)
|