Inzynierka/Lib/site-packages/sklearn/preprocessing/tests/test_function_transformer.py
2023-06-02 12:51:02 +02:00

467 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import warnings
import pytest
import numpy as np
from scipy import sparse
from sklearn.utils import _safe_indexing
from sklearn.preprocessing import FunctionTransformer
from sklearn.pipeline import make_pipeline
from sklearn.utils._testing import (
assert_array_equal,
assert_allclose_dense_sparse,
_convert_container,
)
def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X):
def _func(X, *args, **kwargs):
args_store.append(X)
args_store.extend(args)
kwargs_store.update(kwargs)
return func(X)
return _func
def test_delegate_to_func():
# (args|kwargs)_store will hold the positional and keyword arguments
# passed to the function inside the FunctionTransformer.
args_store = []
kwargs_store = {}
X = np.arange(10).reshape((5, 2))
assert_array_equal(
FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X),
X,
"transform should have returned X unchanged",
)
# The function should only have received X.
assert args_store == [
X
], "Incorrect positional arguments passed to func: {args}".format(args=args_store)
assert (
not kwargs_store
), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)
# reset the argument stores.
args_store[:] = []
kwargs_store.clear()
transformed = FunctionTransformer(
_make_func(args_store, kwargs_store),
).transform(X)
assert_array_equal(
transformed, X, err_msg="transform should have returned X unchanged"
)
# The function should have received X
assert args_store == [
X
], "Incorrect positional arguments passed to func: {args}".format(args=args_store)
assert (
not kwargs_store
), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)
def test_np_log():
X = np.arange(10).reshape((5, 2))
# Test that the numpy.log example still works.
assert_array_equal(
FunctionTransformer(np.log1p).transform(X),
np.log1p(X),
)
def test_kw_arg():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
# Test that rounding is correct
assert_array_equal(F.transform(X), np.around(X, decimals=3))
def test_kw_arg_update():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
F.kw_args["decimals"] = 1
# Test that rounding is correct
assert_array_equal(F.transform(X), np.around(X, decimals=1))
def test_kw_arg_reset():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
F.kw_args = dict(decimals=1)
# Test that rounding is correct
assert_array_equal(F.transform(X), np.around(X, decimals=1))
def test_inverse_transform():
X = np.array([1, 4, 9, 16]).reshape((2, 2))
# Test that inverse_transform works correctly
F = FunctionTransformer(
func=np.sqrt,
inverse_func=np.around,
inv_kw_args=dict(decimals=3),
)
assert_array_equal(
F.inverse_transform(F.transform(X)),
np.around(np.sqrt(X), decimals=3),
)
def test_check_inverse():
X_dense = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
X_list = [X_dense, sparse.csr_matrix(X_dense), sparse.csc_matrix(X_dense)]
for X in X_list:
if sparse.issparse(X):
accept_sparse = True
else:
accept_sparse = False
trans = FunctionTransformer(
func=np.sqrt,
inverse_func=np.around,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True,
)
warning_message = (
"The provided functions are not strictly"
" inverse of each other. If you are sure you"
" want to proceed regardless, set"
" 'check_inverse=False'."
)
with pytest.warns(UserWarning, match=warning_message):
trans.fit(X)
trans = FunctionTransformer(
func=np.expm1,
inverse_func=np.log1p,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True,
)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
Xt = trans.fit_transform(X)
assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))
# check that we don't check inverse when one of the func or inverse is not
# provided.
trans = FunctionTransformer(
func=np.expm1, inverse_func=None, check_inverse=True, validate=True
)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
trans.fit(X_dense)
trans = FunctionTransformer(
func=None, inverse_func=np.expm1, check_inverse=True, validate=True
)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
trans.fit(X_dense)
def test_function_transformer_frame():
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame(np.random.randn(100, 10))
transformer = FunctionTransformer()
X_df_trans = transformer.fit_transform(X_df)
assert hasattr(X_df_trans, "loc")
@pytest.mark.parametrize("X_type", ["array", "series"])
def test_function_transformer_raise_error_with_mixed_dtype(X_type):
"""Check that `FunctionTransformer.check_inverse` raises error on mixed dtype."""
mapping = {"one": 1, "two": 2, "three": 3, 5: "five", 6: "six"}
inverse_mapping = {value: key for key, value in mapping.items()}
dtype = "object"
data = ["one", "two", "three", "one", "one", 5, 6]
data = _convert_container(data, X_type, columns_name=["value"], dtype=dtype)
def func(X):
return np.array(
[mapping[_safe_indexing(X, i)] for i in range(X.size)], dtype=object
)
def inverse_func(X):
return _convert_container(
[inverse_mapping[x] for x in X],
X_type,
columns_name=["value"],
dtype=dtype,
)
transformer = FunctionTransformer(
func=func, inverse_func=inverse_func, validate=False, check_inverse=True
)
msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
with pytest.raises(ValueError, match=msg):
transformer.fit(data)
def test_function_transformer_support_all_nummerical_dataframes_check_inverse_True():
"""Check support for dataframes with only numerical values."""
pd = pytest.importorskip("pandas")
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
transformer = FunctionTransformer(
func=lambda x: x + 2, inverse_func=lambda x: x - 2, check_inverse=True
)
# Does not raise an error
df_out = transformer.fit_transform(df)
assert_allclose_dense_sparse(df_out, df + 2)
def test_function_transformer_with_dataframe_and_check_inverse_True():
"""Check error is raised when check_inverse=True.
Non-regresion test for gh-25261.
"""
pd = pytest.importorskip("pandas")
transformer = FunctionTransformer(
func=lambda x: x, inverse_func=lambda x: x, check_inverse=True
)
df_mixed = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
with pytest.raises(ValueError, match=msg):
transformer.fit(df_mixed)
@pytest.mark.parametrize(
"X, feature_names_out, input_features, expected",
[
(
# NumPy inputs, default behavior: generate names
np.random.rand(100, 3),
"one-to-one",
None,
("x0", "x1", "x2"),
),
(
# Pandas input, default behavior: use input feature names
{"a": np.random.rand(100), "b": np.random.rand(100)},
"one-to-one",
None,
("a", "b"),
),
(
# NumPy input, feature_names_out=callable
np.random.rand(100, 3),
lambda transformer, input_features: ("a", "b"),
None,
("a", "b"),
),
(
# Pandas input, feature_names_out=callable
{"a": np.random.rand(100), "b": np.random.rand(100)},
lambda transformer, input_features: ("c", "d", "e"),
None,
("c", "d", "e"),
),
(
# NumPy input, feature_names_out=callable default input_features
np.random.rand(100, 3),
lambda transformer, input_features: tuple(input_features) + ("a",),
None,
("x0", "x1", "x2", "a"),
),
(
# Pandas input, feature_names_out=callable default input_features
{"a": np.random.rand(100), "b": np.random.rand(100)},
lambda transformer, input_features: tuple(input_features) + ("c",),
None,
("a", "b", "c"),
),
(
# NumPy input, input_features=list of names
np.random.rand(100, 3),
"one-to-one",
("a", "b", "c"),
("a", "b", "c"),
),
(
# Pandas input, input_features=list of names
{"a": np.random.rand(100), "b": np.random.rand(100)},
"one-to-one",
("a", "b"), # must match feature_names_in_
("a", "b"),
),
(
# NumPy input, feature_names_out=callable, input_features=list
np.random.rand(100, 3),
lambda transformer, input_features: tuple(input_features) + ("d",),
("a", "b", "c"),
("a", "b", "c", "d"),
),
(
# Pandas input, feature_names_out=callable, input_features=list
{"a": np.random.rand(100), "b": np.random.rand(100)},
lambda transformer, input_features: tuple(input_features) + ("c",),
("a", "b"), # must match feature_names_in_
("a", "b", "c"),
),
],
)
@pytest.mark.parametrize("validate", [True, False])
def test_function_transformer_get_feature_names_out(
X, feature_names_out, input_features, expected, validate
):
if isinstance(X, dict):
pd = pytest.importorskip("pandas")
X = pd.DataFrame(X)
transformer = FunctionTransformer(
feature_names_out=feature_names_out, validate=validate
)
transformer.fit_transform(X)
names = transformer.get_feature_names_out(input_features)
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, expected)
def test_function_transformer_get_feature_names_out_without_validation():
transformer = FunctionTransformer(feature_names_out="one-to-one", validate=False)
X = np.random.rand(100, 2)
transformer.fit_transform(X)
names = transformer.get_feature_names_out(("a", "b"))
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, ("a", "b"))
def test_function_transformer_feature_names_out_is_None():
transformer = FunctionTransformer()
X = np.random.rand(100, 2)
transformer.fit_transform(X)
msg = "This 'FunctionTransformer' has no attribute 'get_feature_names_out'"
with pytest.raises(AttributeError, match=msg):
transformer.get_feature_names_out()
def test_function_transformer_feature_names_out_uses_estimator():
def add_n_random_features(X, n):
return np.concatenate([X, np.random.rand(len(X), n)], axis=1)
def feature_names_out(transformer, input_features):
n = transformer.kw_args["n"]
return list(input_features) + [f"rnd{i}" for i in range(n)]
transformer = FunctionTransformer(
func=add_n_random_features,
feature_names_out=feature_names_out,
kw_args=dict(n=3),
validate=True,
)
pd = pytest.importorskip("pandas")
df = pd.DataFrame({"a": np.random.rand(100), "b": np.random.rand(100)})
transformer.fit_transform(df)
names = transformer.get_feature_names_out()
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, ("a", "b", "rnd0", "rnd1", "rnd2"))
def test_function_transformer_validate_inverse():
"""Test that function transformer does not reset estimator in
`inverse_transform`."""
def add_constant_feature(X):
X_one = np.ones((X.shape[0], 1))
return np.concatenate((X, X_one), axis=1)
def inverse_add_constant(X):
return X[:, :-1]
X = np.array([[1, 2], [3, 4], [3, 4]])
trans = FunctionTransformer(
func=add_constant_feature,
inverse_func=inverse_add_constant,
validate=True,
)
X_trans = trans.fit_transform(X)
assert trans.n_features_in_ == X.shape[1]
trans.inverse_transform(X_trans)
assert trans.n_features_in_ == X.shape[1]
@pytest.mark.parametrize(
"feature_names_out, expected",
[
("one-to-one", ["pet", "color"]),
[lambda est, names: [f"{n}_out" for n in names], ["pet_out", "color_out"]],
],
)
@pytest.mark.parametrize("in_pipeline", [True, False])
def test_get_feature_names_out_dataframe_with_string_data(
feature_names_out, expected, in_pipeline
):
"""Check that get_feature_names_out works with DataFrames with string data."""
pd = pytest.importorskip("pandas")
X = pd.DataFrame({"pet": ["dog", "cat"], "color": ["red", "green"]})
transformer = FunctionTransformer(feature_names_out=feature_names_out)
if in_pipeline:
transformer = make_pipeline(transformer)
X_trans = transformer.fit_transform(X)
assert isinstance(X_trans, pd.DataFrame)
names = transformer.get_feature_names_out()
assert isinstance(names, np.ndarray)
assert names.dtype == object
assert_array_equal(names, expected)
def test_set_output_func():
"""Check behavior of set_output with different settings."""
pd = pytest.importorskip("pandas")
X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})
ft = FunctionTransformer(np.log, feature_names_out="one-to-one")
# no warning is raised when feature_names_out is defined
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
ft.set_output(transform="pandas")
X_trans = ft.fit_transform(X)
assert isinstance(X_trans, pd.DataFrame)
assert_array_equal(X_trans.columns, ["a", "b"])
# If feature_names_out is not defined, then a warning is raised in
# `set_output`
ft = FunctionTransformer(lambda x: 2 * x)
msg = "should return a DataFrame to follow the set_output API"
with pytest.warns(UserWarning, match=msg):
ft.set_output(transform="pandas")
X_trans = ft.fit_transform(X)
assert isinstance(X_trans, pd.DataFrame)
assert_array_equal(X_trans.columns, ["a", "b"])