Inzynierka/Lib/site-packages/sklearn/semi_supervised/tests/test_self_training.py
2023-06-02 12:51:02 +02:00

326 lines
11 KiB
Python

from math import ceil
import numpy as np
from numpy.testing import assert_array_equal
import pytest
from sklearn.ensemble import StackingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris, make_blobs
from sklearn.metrics import accuracy_score
from sklearn.semi_supervised import SelfTrainingClassifier
# Author: Oliver Rausch <rauscho@ethz.ch>
# License: BSD 3 clause
# load the iris dataset and randomly permute it
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, random_state=0
)
n_labeled_samples = 50
y_train_missing_labels = y_train.copy()
y_train_missing_labels[n_labeled_samples:] = -1
mapping = {0: "A", 1: "B", 2: "C", -1: "-1"}
y_train_missing_strings = np.vectorize(mapping.get)(y_train_missing_labels).astype(
object
)
y_train_missing_strings[y_train_missing_labels == -1] = -1
def test_warns_k_best():
st = SelfTrainingClassifier(KNeighborsClassifier(), criterion="k_best", k_best=1000)
with pytest.warns(UserWarning, match="k_best is larger than"):
st.fit(X_train, y_train_missing_labels)
assert st.termination_condition_ == "all_labeled"
@pytest.mark.parametrize(
"base_estimator",
[KNeighborsClassifier(), SVC(gamma="scale", probability=True, random_state=0)],
)
@pytest.mark.parametrize("selection_crit", ["threshold", "k_best"])
def test_classification(base_estimator, selection_crit):
# Check classification for various parameter settings.
# Also assert that predictions for strings and numerical labels are equal.
# Also test for multioutput classification
threshold = 0.75
max_iter = 10
st = SelfTrainingClassifier(
base_estimator, max_iter=max_iter, threshold=threshold, criterion=selection_crit
)
st.fit(X_train, y_train_missing_labels)
pred = st.predict(X_test)
proba = st.predict_proba(X_test)
st_string = SelfTrainingClassifier(
base_estimator, max_iter=max_iter, criterion=selection_crit, threshold=threshold
)
st_string.fit(X_train, y_train_missing_strings)
pred_string = st_string.predict(X_test)
proba_string = st_string.predict_proba(X_test)
assert_array_equal(np.vectorize(mapping.get)(pred), pred_string)
assert_array_equal(proba, proba_string)
assert st.termination_condition_ == st_string.termination_condition_
# Check consistency between labeled_iter, n_iter and max_iter
labeled = y_train_missing_labels != -1
# assert that labeled samples have labeled_iter = 0
assert_array_equal(st.labeled_iter_ == 0, labeled)
# assert that labeled samples do not change label during training
assert_array_equal(y_train_missing_labels[labeled], st.transduction_[labeled])
# assert that the max of the iterations is less than the total amount of
# iterations
assert np.max(st.labeled_iter_) <= st.n_iter_ <= max_iter
assert np.max(st_string.labeled_iter_) <= st_string.n_iter_ <= max_iter
# check shapes
assert st.labeled_iter_.shape == st.transduction_.shape
assert st_string.labeled_iter_.shape == st_string.transduction_.shape
def test_k_best():
st = SelfTrainingClassifier(
KNeighborsClassifier(n_neighbors=1),
criterion="k_best",
k_best=10,
max_iter=None,
)
y_train_only_one_label = np.copy(y_train)
y_train_only_one_label[1:] = -1
n_samples = y_train.shape[0]
n_expected_iter = ceil((n_samples - 1) / 10)
st.fit(X_train, y_train_only_one_label)
assert st.n_iter_ == n_expected_iter
# Check labeled_iter_
assert np.sum(st.labeled_iter_ == 0) == 1
for i in range(1, n_expected_iter):
assert np.sum(st.labeled_iter_ == i) == 10
assert np.sum(st.labeled_iter_ == n_expected_iter) == (n_samples - 1) % 10
assert st.termination_condition_ == "all_labeled"
def test_sanity_classification():
base_estimator = SVC(gamma="scale", probability=True)
base_estimator.fit(X_train[n_labeled_samples:], y_train[n_labeled_samples:])
st = SelfTrainingClassifier(base_estimator)
st.fit(X_train, y_train_missing_labels)
pred1, pred2 = base_estimator.predict(X_test), st.predict(X_test)
assert not np.array_equal(pred1, pred2)
score_supervised = accuracy_score(base_estimator.predict(X_test), y_test)
score_self_training = accuracy_score(st.predict(X_test), y_test)
assert score_self_training > score_supervised
def test_none_iter():
# Check that the all samples were labeled after a 'reasonable' number of
# iterations.
st = SelfTrainingClassifier(KNeighborsClassifier(), threshold=0.55, max_iter=None)
st.fit(X_train, y_train_missing_labels)
assert st.n_iter_ < 10
assert st.termination_condition_ == "all_labeled"
@pytest.mark.parametrize(
"base_estimator",
[KNeighborsClassifier(), SVC(gamma="scale", probability=True, random_state=0)],
)
@pytest.mark.parametrize("y", [y_train_missing_labels, y_train_missing_strings])
def test_zero_iterations(base_estimator, y):
# Check classification for zero iterations.
# Fitting a SelfTrainingClassifier with zero iterations should give the
# same results as fitting a supervised classifier.
# This also asserts that string arrays work as expected.
clf1 = SelfTrainingClassifier(base_estimator, max_iter=0)
clf1.fit(X_train, y)
clf2 = base_estimator.fit(X_train[:n_labeled_samples], y[:n_labeled_samples])
assert_array_equal(clf1.predict(X_test), clf2.predict(X_test))
assert clf1.termination_condition_ == "max_iter"
def test_prefitted_throws_error():
# Test that passing a pre-fitted classifier and calling predict throws an
# error
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
st = SelfTrainingClassifier(knn)
with pytest.raises(
NotFittedError,
match="This SelfTrainingClassifier instance is not fitted yet",
):
st.predict(X_train)
@pytest.mark.parametrize("max_iter", range(1, 5))
def test_labeled_iter(max_iter):
# Check that the amount of datapoints labeled in iteration 0 is equal to
# the amount of labeled datapoints we passed.
st = SelfTrainingClassifier(KNeighborsClassifier(), max_iter=max_iter)
st.fit(X_train, y_train_missing_labels)
amount_iter_0 = len(st.labeled_iter_[st.labeled_iter_ == 0])
assert amount_iter_0 == n_labeled_samples
# Check that the max of the iterations is less than the total amount of
# iterations
assert np.max(st.labeled_iter_) <= st.n_iter_ <= max_iter
def test_no_unlabeled():
# Test that training on a fully labeled dataset produces the same results
# as training the classifier by itself.
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
st = SelfTrainingClassifier(knn)
with pytest.warns(UserWarning, match="y contains no unlabeled samples"):
st.fit(X_train, y_train)
assert_array_equal(knn.predict(X_test), st.predict(X_test))
# Assert that all samples were labeled in iteration 0 (since there were no
# unlabeled samples).
assert np.all(st.labeled_iter_ == 0)
assert st.termination_condition_ == "all_labeled"
def test_early_stopping():
svc = SVC(gamma="scale", probability=True)
st = SelfTrainingClassifier(svc)
X_train_easy = [[1], [0], [1], [0.5]]
y_train_easy = [1, 0, -1, -1]
# X = [[0.5]] cannot be predicted on with a high confidence, so training
# stops early
st.fit(X_train_easy, y_train_easy)
assert st.n_iter_ == 1
assert st.termination_condition_ == "no_change"
def test_strings_dtype():
clf = SelfTrainingClassifier(KNeighborsClassifier())
X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1)
labels_multiclass = ["one", "two", "three"]
y_strings = np.take(labels_multiclass, y)
with pytest.raises(ValueError, match="dtype"):
clf.fit(X, y_strings)
@pytest.mark.parametrize("verbose", [True, False])
def test_verbose(capsys, verbose):
clf = SelfTrainingClassifier(KNeighborsClassifier(), verbose=verbose)
clf.fit(X_train, y_train_missing_labels)
captured = capsys.readouterr()
if verbose:
assert "iteration" in captured.out
else:
assert "iteration" not in captured.out
def test_verbose_k_best(capsys):
st = SelfTrainingClassifier(
KNeighborsClassifier(n_neighbors=1),
criterion="k_best",
k_best=10,
verbose=True,
max_iter=None,
)
y_train_only_one_label = np.copy(y_train)
y_train_only_one_label[1:] = -1
n_samples = y_train.shape[0]
n_expected_iter = ceil((n_samples - 1) / 10)
st.fit(X_train, y_train_only_one_label)
captured = capsys.readouterr()
msg = "End of iteration {}, added {} new labels."
for i in range(1, n_expected_iter):
assert msg.format(i, 10) in captured.out
assert msg.format(n_expected_iter, (n_samples - 1) % 10) in captured.out
def test_k_best_selects_best():
# Tests that the labels added by st really are the 10 best labels.
svc = SVC(gamma="scale", probability=True, random_state=0)
st = SelfTrainingClassifier(svc, criterion="k_best", max_iter=1, k_best=10)
has_label = y_train_missing_labels != -1
st.fit(X_train, y_train_missing_labels)
got_label = ~has_label & (st.transduction_ != -1)
svc.fit(X_train[has_label], y_train_missing_labels[has_label])
pred = svc.predict_proba(X_train[~has_label])
max_proba = np.max(pred, axis=1)
most_confident_svc = X_train[~has_label][np.argsort(max_proba)[-10:]]
added_by_st = X_train[np.where(got_label)].tolist()
for row in most_confident_svc.tolist():
assert row in added_by_st
def test_base_estimator_meta_estimator():
# Check that a meta-estimator relying on an estimator implementing
# `predict_proba` will work even if it does not expose this method before being
# fitted.
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/19119
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=True)),
("svc_2", SVC(probability=True)),
],
final_estimator=SVC(probability=True),
cv=2,
)
assert hasattr(base_estimator, "predict_proba")
clf = SelfTrainingClassifier(base_estimator=base_estimator)
clf.fit(X_train, y_train_missing_labels)
clf.predict_proba(X_test)
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=False)),
("svc_2", SVC(probability=False)),
],
final_estimator=SVC(probability=False),
cv=2,
)
assert not hasattr(base_estimator, "predict_proba")
clf = SelfTrainingClassifier(base_estimator=base_estimator)
with pytest.raises(AttributeError):
clf.fit(X_train, y_train_missing_labels)
def test_missing_predict_proba():
# Check that an error is thrown if predict_proba is not implemented
base_estimator = SVC(probability=False, gamma="scale")
self_training = SelfTrainingClassifier(base_estimator)
with pytest.raises(AttributeError, match="predict_proba is not available"):
self_training.fit(X_train, y_train_missing_labels)