Inzynierka/Lib/site-packages/sklearn/tests/test_docstring_parameters.py
2023-06-02 12:51:02 +02:00

362 lines
12 KiB
Python

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Raghav RV <rvraghav93@gmail.com>
# License: BSD 3 clause
import inspect
import warnings
import importlib
from pkgutil import walk_packages
from inspect import signature
import numpy as np
# make it possible to discover experimental estimators when calling `all_estimators`
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.experimental import enable_halving_search_cv # noqa
import sklearn
from sklearn.utils import IS_PYPY
from sklearn.utils._testing import check_docstring_parameters
from sklearn.utils._testing import _get_func_name
from sklearn.utils._testing import ignore_warnings
from sklearn.utils import all_estimators
from sklearn.utils.estimator_checks import _enforce_estimator_tags_y
from sklearn.utils.estimator_checks import _enforce_estimator_tags_X
from sklearn.utils.estimator_checks import _construct_instance
from sklearn.utils.fixes import sp_version, parse_version
from sklearn.utils.deprecation import _is_deprecated
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import FunctionTransformer
import pytest
# walk_packages() ignores DeprecationWarnings, now we need to ignore
# FutureWarnings
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
# mypy error: Module has no attribute "__path__"
sklearn_path = sklearn.__path__ # type: ignore # mypy issue #1422
PUBLIC_MODULES = set(
[
pckg[1]
for pckg in walk_packages(prefix="sklearn.", path=sklearn_path)
if not ("._" in pckg[1] or ".tests." in pckg[1])
]
)
# functions to ignore args / docstring of
_DOCSTRING_IGNORES = [
"sklearn.utils.deprecation.load_mlcomp",
"sklearn.pipeline.make_pipeline",
"sklearn.pipeline.make_union",
"sklearn.utils.extmath.safe_sparse_dot",
"sklearn.utils._joblib",
]
# Methods where y param should be ignored if y=None by default
_METHODS_IGNORE_NONE_Y = [
"fit",
"score",
"fit_predict",
"fit_transform",
"partial_fit",
"predict",
]
# numpydoc 0.8.0's docscrape tool raises because of collections.abc under
# Python 3.7
@pytest.mark.filterwarnings("ignore::FutureWarning")
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
@pytest.mark.skipif(IS_PYPY, reason="test segfaults on PyPy")
def test_docstring_parameters():
# Test module docstring formatting
# Skip test if numpydoc is not found
pytest.importorskip(
"numpydoc", reason="numpydoc is required to test the docstrings"
)
# XXX unreached code as of v0.22
from numpydoc import docscrape
incorrect = []
for name in PUBLIC_MODULES:
if name.endswith(".conftest"):
# pytest tooling, not part of the scikit-learn API
continue
if name == "sklearn.utils.fixes":
# We cannot always control these docstrings
continue
with warnings.catch_warnings(record=True):
module = importlib.import_module(name)
classes = inspect.getmembers(module, inspect.isclass)
# Exclude non-scikit-learn classes
classes = [cls for cls in classes if cls[1].__module__.startswith("sklearn")]
for cname, cls in classes:
this_incorrect = []
if cname in _DOCSTRING_IGNORES or cname.startswith("_"):
continue
if inspect.isabstract(cls):
continue
with warnings.catch_warnings(record=True) as w:
cdoc = docscrape.ClassDoc(cls)
if len(w):
raise RuntimeError(
"Error for __init__ of %s in %s:\n%s" % (cls, name, w[0])
)
cls_init = getattr(cls, "__init__", None)
if _is_deprecated(cls_init):
continue
elif cls_init is not None:
this_incorrect += check_docstring_parameters(cls.__init__, cdoc)
for method_name in cdoc.methods:
method = getattr(cls, method_name)
if _is_deprecated(method):
continue
param_ignore = None
# Now skip docstring test for y when y is None
# by default for API reason
if method_name in _METHODS_IGNORE_NONE_Y:
sig = signature(method)
if "y" in sig.parameters and sig.parameters["y"].default is None:
param_ignore = ["y"] # ignore y for fit and score
result = check_docstring_parameters(method, ignore=param_ignore)
this_incorrect += result
incorrect += this_incorrect
functions = inspect.getmembers(module, inspect.isfunction)
# Exclude imported functions
functions = [fn for fn in functions if fn[1].__module__ == name]
for fname, func in functions:
# Don't test private methods / functions
if fname.startswith("_"):
continue
if fname == "configuration" and name.endswith("setup"):
continue
name_ = _get_func_name(func)
if not any(d in name_ for d in _DOCSTRING_IGNORES) and not _is_deprecated(
func
):
incorrect += check_docstring_parameters(func)
msg = "\n".join(incorrect)
if len(incorrect) > 0:
raise AssertionError("Docstring Error:\n" + msg)
@ignore_warnings(category=FutureWarning)
def test_tabs():
# Test that there are no tabs in our source files
for importer, modname, ispkg in walk_packages(sklearn.__path__, prefix="sklearn."):
if IS_PYPY and (
"_svmlight_format_io" in modname
or "feature_extraction._hashing_fast" in modname
):
continue
# because we don't import
mod = importlib.import_module(modname)
try:
source = inspect.getsource(mod)
except IOError: # user probably should have run "make clean"
continue
assert "\t" not in source, (
'"%s" has tabs, please remove them ',
"or add it to the ignore list" % modname,
)
def _construct_searchcv_instance(SearchCV):
return SearchCV(LogisticRegression(), {"C": [0.1, 1]})
def _construct_compose_pipeline_instance(Estimator):
# Minimal / degenerate instances: only useful to test the docstrings.
if Estimator.__name__ == "ColumnTransformer":
return Estimator(transformers=[("transformer", "passthrough", [0, 1])])
elif Estimator.__name__ == "Pipeline":
return Estimator(steps=[("clf", LogisticRegression())])
elif Estimator.__name__ == "FeatureUnion":
return Estimator(transformer_list=[("transformer", FunctionTransformer())])
def _construct_sparse_coder(Estimator):
# XXX: hard-coded assumption that n_features=3
dictionary = np.array(
[[0, 1, 0], [-1, -1, 2], [1, 1, 1], [0, 1, 1], [0, 2, 1]],
dtype=np.float64,
)
return Estimator(dictionary=dictionary)
@pytest.mark.parametrize("name, Estimator", all_estimators())
def test_fit_docstring_attributes(name, Estimator):
pytest.importorskip("numpydoc")
from numpydoc import docscrape
doc = docscrape.ClassDoc(Estimator)
attributes = doc["Attributes"]
if Estimator.__name__ in (
"HalvingRandomSearchCV",
"RandomizedSearchCV",
"HalvingGridSearchCV",
"GridSearchCV",
):
est = _construct_searchcv_instance(Estimator)
elif Estimator.__name__ in (
"ColumnTransformer",
"Pipeline",
"FeatureUnion",
):
est = _construct_compose_pipeline_instance(Estimator)
elif Estimator.__name__ == "SparseCoder":
est = _construct_sparse_coder(Estimator)
else:
est = _construct_instance(Estimator)
if Estimator.__name__ == "SelectKBest":
est.set_params(k=2)
elif Estimator.__name__ == "DummyClassifier":
est.set_params(strategy="stratified")
elif Estimator.__name__ == "CCA" or Estimator.__name__.startswith("PLS"):
# default = 2 is invalid for single target
est.set_params(n_components=1)
elif Estimator.__name__ in (
"GaussianRandomProjection",
"SparseRandomProjection",
):
# default="auto" raises an error with the shape of `X`
est.set_params(n_components=2)
elif Estimator.__name__ == "TSNE":
# default raises an error, perplexity must be less than n_samples
est.set_params(perplexity=2)
# FIXME: TO BE REMOVED for 1.3 (avoid FutureWarning)
if Estimator.__name__ == "SequentialFeatureSelector":
est.set_params(n_features_to_select="auto")
# FIXME: TO BE REMOVED for 1.3 (avoid FutureWarning)
if Estimator.__name__ == "FastICA":
est.set_params(whiten="unit-variance")
# FIXME: TO BE REMOVED for 1.3 (avoid FutureWarning)
if Estimator.__name__ == "MiniBatchDictionaryLearning":
est.set_params(batch_size=5)
# TODO(1.4): TO BE REMOVED for 1.4 (avoid FutureWarning)
if Estimator.__name__ in ("KMeans", "MiniBatchKMeans"):
est.set_params(n_init="auto")
# TODO(1.4): TO BE REMOVED for 1.4 (avoid FutureWarning)
if Estimator.__name__ in (
"MultinomialNB",
"ComplementNB",
"BernoulliNB",
"CategoricalNB",
):
est.set_params(force_alpha=True)
if Estimator.__name__ == "QuantileRegressor":
solver = "highs" if sp_version >= parse_version("1.6.0") else "interior-point"
est.set_params(solver=solver)
# TODO(1.4): TO BE REMOVED for 1.4 (avoid FutureWarning)
if Estimator.__name__ == "MDS":
est.set_params(normalized_stress="auto")
# In case we want to deprecate some attributes in the future
skipped_attributes = {}
if Estimator.__name__.endswith("Vectorizer"):
# Vectorizer require some specific input data
if Estimator.__name__ in (
"CountVectorizer",
"HashingVectorizer",
"TfidfVectorizer",
):
X = [
"This is the first document.",
"This document is the second document.",
"And this is the third one.",
"Is this the first document?",
]
elif Estimator.__name__ == "DictVectorizer":
X = [{"foo": 1, "bar": 2}, {"foo": 3, "baz": 1}]
y = None
else:
X, y = make_classification(
n_samples=20,
n_features=3,
n_redundant=0,
n_classes=2,
random_state=2,
)
y = _enforce_estimator_tags_y(est, y)
X = _enforce_estimator_tags_X(est, X)
if "1dlabels" in est._get_tags()["X_types"]:
est.fit(y)
elif "2dlabels" in est._get_tags()["X_types"]:
est.fit(np.c_[y, y])
else:
est.fit(X, y)
for attr in attributes:
if attr.name in skipped_attributes:
continue
desc = " ".join(attr.desc).lower()
# As certain attributes are present "only" if a certain parameter is
# provided, this checks if the word "only" is present in the attribute
# description, and if not the attribute is required to be present.
if "only " in desc:
continue
# ignore deprecation warnings
with ignore_warnings(category=FutureWarning):
assert hasattr(est, attr.name)
fit_attr = _get_all_fitted_attributes(est)
fit_attr_names = [attr.name for attr in attributes]
undocumented_attrs = set(fit_attr).difference(fit_attr_names)
undocumented_attrs = set(undocumented_attrs).difference(skipped_attributes)
if undocumented_attrs:
raise AssertionError(
f"Undocumented attributes for {Estimator.__name__}: {undocumented_attrs}"
)
def _get_all_fitted_attributes(estimator):
"Get all the fitted attributes of an estimator including properties"
# attributes
fit_attr = list(estimator.__dict__.keys())
# properties
with warnings.catch_warnings():
warnings.filterwarnings("error", category=FutureWarning)
for name in dir(estimator.__class__):
obj = getattr(estimator.__class__, name)
if not isinstance(obj, property):
continue
# ignore properties that raises an AttributeError and deprecated
# properties
try:
getattr(estimator, name)
except (AttributeError, FutureWarning):
continue
fit_attr.append(name)
return [k for k in fit_attr if k.endswith("_") and not k.startswith("_")]