788 lines
26 KiB
Python
788 lines
26 KiB
Python
import numpy as np
|
|
import functools
|
|
import sys
|
|
import pytest
|
|
|
|
from numpy.lib.shape_base import (
|
|
apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit,
|
|
vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis,
|
|
put_along_axis
|
|
)
|
|
from numpy.testing import (
|
|
assert_, assert_equal, assert_array_equal, assert_raises, assert_warns
|
|
)
|
|
|
|
|
|
IS_64BIT = sys.maxsize > 2**32
|
|
|
|
|
|
def _add_keepdims(func):
|
|
""" hack in keepdims behavior into a function taking an axis """
|
|
@functools.wraps(func)
|
|
def wrapped(a, axis, **kwargs):
|
|
res = func(a, axis=axis, **kwargs)
|
|
if axis is None:
|
|
axis = 0 # res is now a scalar, so we can insert this anywhere
|
|
return np.expand_dims(res, axis=axis)
|
|
return wrapped
|
|
|
|
|
|
class TestTakeAlongAxis:
|
|
def test_argequivalent(self):
|
|
""" Test it translates from arg<func> to <func> """
|
|
from numpy.random import rand
|
|
a = rand(3, 4, 5)
|
|
|
|
funcs = [
|
|
(np.sort, np.argsort, dict()),
|
|
(_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
|
|
(_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
|
|
(np.partition, np.argpartition, dict(kth=2)),
|
|
]
|
|
|
|
for func, argfunc, kwargs in funcs:
|
|
for axis in list(range(a.ndim)) + [None]:
|
|
a_func = func(a, axis=axis, **kwargs)
|
|
ai_func = argfunc(a, axis=axis, **kwargs)
|
|
assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
|
|
|
|
def test_invalid(self):
|
|
""" Test it errors when indices has too few dimensions """
|
|
a = np.ones((10, 10))
|
|
ai = np.ones((10, 2), dtype=np.intp)
|
|
|
|
# sanity check
|
|
take_along_axis(a, ai, axis=1)
|
|
|
|
# not enough indices
|
|
assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1)
|
|
# bool arrays not allowed
|
|
assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1)
|
|
# float arrays not allowed
|
|
assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1)
|
|
# invalid axis
|
|
assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
|
|
|
|
def test_empty(self):
|
|
""" Test everything is ok with empty results, even with inserted dims """
|
|
a = np.ones((3, 4, 5))
|
|
ai = np.ones((3, 0, 5), dtype=np.intp)
|
|
|
|
actual = take_along_axis(a, ai, axis=1)
|
|
assert_equal(actual.shape, ai.shape)
|
|
|
|
def test_broadcast(self):
|
|
""" Test that non-indexing dimensions are broadcast in both directions """
|
|
a = np.ones((3, 4, 1))
|
|
ai = np.ones((1, 2, 5), dtype=np.intp)
|
|
actual = take_along_axis(a, ai, axis=1)
|
|
assert_equal(actual.shape, (3, 2, 5))
|
|
|
|
|
|
class TestPutAlongAxis:
|
|
def test_replace_max(self):
|
|
a_base = np.array([[10, 30, 20], [60, 40, 50]])
|
|
|
|
for axis in list(range(a_base.ndim)) + [None]:
|
|
# we mutate this in the loop
|
|
a = a_base.copy()
|
|
|
|
# replace the max with a small value
|
|
i_max = _add_keepdims(np.argmax)(a, axis=axis)
|
|
put_along_axis(a, i_max, -99, axis=axis)
|
|
|
|
# find the new minimum, which should max
|
|
i_min = _add_keepdims(np.argmin)(a, axis=axis)
|
|
|
|
assert_equal(i_min, i_max)
|
|
|
|
def test_broadcast(self):
|
|
""" Test that non-indexing dimensions are broadcast in both directions """
|
|
a = np.ones((3, 4, 1))
|
|
ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4
|
|
put_along_axis(a, ai, 20, axis=1)
|
|
assert_equal(take_along_axis(a, ai, axis=1), 20)
|
|
|
|
|
|
class TestApplyAlongAxis:
|
|
def test_simple(self):
|
|
a = np.ones((20, 10), 'd')
|
|
assert_array_equal(
|
|
apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))
|
|
|
|
def test_simple101(self):
|
|
a = np.ones((10, 101), 'd')
|
|
assert_array_equal(
|
|
apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))
|
|
|
|
def test_3d(self):
|
|
a = np.arange(27).reshape((3, 3, 3))
|
|
assert_array_equal(apply_along_axis(np.sum, 0, a),
|
|
[[27, 30, 33], [36, 39, 42], [45, 48, 51]])
|
|
|
|
def test_preserve_subclass(self):
|
|
def double(row):
|
|
return row * 2
|
|
|
|
class MyNDArray(np.ndarray):
|
|
pass
|
|
|
|
m = np.array([[0, 1], [2, 3]]).view(MyNDArray)
|
|
expected = np.array([[0, 2], [4, 6]]).view(MyNDArray)
|
|
|
|
result = apply_along_axis(double, 0, m)
|
|
assert_(isinstance(result, MyNDArray))
|
|
assert_array_equal(result, expected)
|
|
|
|
result = apply_along_axis(double, 1, m)
|
|
assert_(isinstance(result, MyNDArray))
|
|
assert_array_equal(result, expected)
|
|
|
|
def test_subclass(self):
|
|
class MinimalSubclass(np.ndarray):
|
|
data = 1
|
|
|
|
def minimal_function(array):
|
|
return array.data
|
|
|
|
a = np.zeros((6, 3)).view(MinimalSubclass)
|
|
|
|
assert_array_equal(
|
|
apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1])
|
|
)
|
|
|
|
def test_scalar_array(self, cls=np.ndarray):
|
|
a = np.ones((6, 3)).view(cls)
|
|
res = apply_along_axis(np.sum, 0, a)
|
|
assert_(isinstance(res, cls))
|
|
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
|
|
|
|
def test_0d_array(self, cls=np.ndarray):
|
|
def sum_to_0d(x):
|
|
""" Sum x, returning a 0d array of the same class """
|
|
assert_equal(x.ndim, 1)
|
|
return np.squeeze(np.sum(x, keepdims=True))
|
|
a = np.ones((6, 3)).view(cls)
|
|
res = apply_along_axis(sum_to_0d, 0, a)
|
|
assert_(isinstance(res, cls))
|
|
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
|
|
|
|
res = apply_along_axis(sum_to_0d, 1, a)
|
|
assert_(isinstance(res, cls))
|
|
assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))
|
|
|
|
def test_axis_insertion(self, cls=np.ndarray):
|
|
def f1to2(x):
|
|
"""produces an asymmetric non-square matrix from x"""
|
|
assert_equal(x.ndim, 1)
|
|
return (x[::-1] * x[1:,None]).view(cls)
|
|
|
|
a2d = np.arange(6*3).reshape((6, 3))
|
|
|
|
# 2d insertion along first axis
|
|
actual = apply_along_axis(f1to2, 0, a2d)
|
|
expected = np.stack([
|
|
f1to2(a2d[:,i]) for i in range(a2d.shape[1])
|
|
], axis=-1).view(cls)
|
|
assert_equal(type(actual), type(expected))
|
|
assert_equal(actual, expected)
|
|
|
|
# 2d insertion along last axis
|
|
actual = apply_along_axis(f1to2, 1, a2d)
|
|
expected = np.stack([
|
|
f1to2(a2d[i,:]) for i in range(a2d.shape[0])
|
|
], axis=0).view(cls)
|
|
assert_equal(type(actual), type(expected))
|
|
assert_equal(actual, expected)
|
|
|
|
# 3d insertion along middle axis
|
|
a3d = np.arange(6*5*3).reshape((6, 5, 3))
|
|
|
|
actual = apply_along_axis(f1to2, 1, a3d)
|
|
expected = np.stack([
|
|
np.stack([
|
|
f1to2(a3d[i,:,j]) for i in range(a3d.shape[0])
|
|
], axis=0)
|
|
for j in range(a3d.shape[2])
|
|
], axis=-1).view(cls)
|
|
assert_equal(type(actual), type(expected))
|
|
assert_equal(actual, expected)
|
|
|
|
def test_subclass_preservation(self):
|
|
class MinimalSubclass(np.ndarray):
|
|
pass
|
|
self.test_scalar_array(MinimalSubclass)
|
|
self.test_0d_array(MinimalSubclass)
|
|
self.test_axis_insertion(MinimalSubclass)
|
|
|
|
def test_axis_insertion_ma(self):
|
|
def f1to2(x):
|
|
"""produces an asymmetric non-square matrix from x"""
|
|
assert_equal(x.ndim, 1)
|
|
res = x[::-1] * x[1:,None]
|
|
return np.ma.masked_where(res%5==0, res)
|
|
a = np.arange(6*3).reshape((6, 3))
|
|
res = apply_along_axis(f1to2, 0, a)
|
|
assert_(isinstance(res, np.ma.masked_array))
|
|
assert_equal(res.ndim, 3)
|
|
assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask)
|
|
assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask)
|
|
assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask)
|
|
|
|
def test_tuple_func1d(self):
|
|
def sample_1d(x):
|
|
return x[1], x[0]
|
|
res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
|
|
assert_array_equal(res, np.array([[2, 1], [4, 3]]))
|
|
|
|
def test_empty(self):
|
|
# can't apply_along_axis when there's no chance to call the function
|
|
def never_call(x):
|
|
assert_(False) # should never be reached
|
|
|
|
a = np.empty((0, 0))
|
|
assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
|
|
assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)
|
|
|
|
# but it's sometimes ok with some non-zero dimensions
|
|
def empty_to_1(x):
|
|
assert_(len(x) == 0)
|
|
return 1
|
|
|
|
a = np.empty((10, 0))
|
|
actual = np.apply_along_axis(empty_to_1, 1, a)
|
|
assert_equal(actual, np.ones(10))
|
|
assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)
|
|
|
|
def test_with_iterable_object(self):
|
|
# from issue 5248
|
|
d = np.array([
|
|
[{1, 11}, {2, 22}, {3, 33}],
|
|
[{4, 44}, {5, 55}, {6, 66}]
|
|
])
|
|
actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
|
|
expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])
|
|
|
|
assert_equal(actual, expected)
|
|
|
|
# issue 8642 - assert_equal doesn't detect this!
|
|
for i in np.ndindex(actual.shape):
|
|
assert_equal(type(actual[i]), type(expected[i]))
|
|
|
|
|
|
class TestApplyOverAxes:
|
|
def test_simple(self):
|
|
a = np.arange(24).reshape(2, 3, 4)
|
|
aoa_a = apply_over_axes(np.sum, a, [0, 2])
|
|
assert_array_equal(aoa_a, np.array([[[60], [92], [124]]]))
|
|
|
|
|
|
class TestExpandDims:
|
|
def test_functionality(self):
|
|
s = (2, 3, 4, 5)
|
|
a = np.empty(s)
|
|
for axis in range(-5, 4):
|
|
b = expand_dims(a, axis)
|
|
assert_(b.shape[axis] == 1)
|
|
assert_(np.squeeze(b).shape == s)
|
|
|
|
def test_axis_tuple(self):
|
|
a = np.empty((3, 3, 3))
|
|
assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
|
|
assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
|
|
assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
|
|
assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)
|
|
|
|
def test_axis_out_of_range(self):
|
|
s = (2, 3, 4, 5)
|
|
a = np.empty(s)
|
|
assert_raises(np.AxisError, expand_dims, a, -6)
|
|
assert_raises(np.AxisError, expand_dims, a, 5)
|
|
|
|
a = np.empty((3, 3, 3))
|
|
assert_raises(np.AxisError, expand_dims, a, (0, -6))
|
|
assert_raises(np.AxisError, expand_dims, a, (0, 5))
|
|
|
|
def test_repeated_axis(self):
|
|
a = np.empty((3, 3, 3))
|
|
assert_raises(ValueError, expand_dims, a, axis=(1, 1))
|
|
|
|
def test_subclasses(self):
|
|
a = np.arange(10).reshape((2, 5))
|
|
a = np.ma.array(a, mask=a%3 == 0)
|
|
|
|
expanded = np.expand_dims(a, axis=1)
|
|
assert_(isinstance(expanded, np.ma.MaskedArray))
|
|
assert_equal(expanded.shape, (2, 1, 5))
|
|
assert_equal(expanded.mask.shape, (2, 1, 5))
|
|
|
|
|
|
class TestArraySplit:
|
|
def test_integer_0_split(self):
|
|
a = np.arange(10)
|
|
assert_raises(ValueError, array_split, a, 0)
|
|
|
|
def test_integer_split(self):
|
|
a = np.arange(10)
|
|
res = array_split(a, 1)
|
|
desired = [np.arange(10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 2)
|
|
desired = [np.arange(5), np.arange(5, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 3)
|
|
desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 4)
|
|
desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8),
|
|
np.arange(8, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 5)
|
|
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
|
|
np.arange(6, 8), np.arange(8, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 6)
|
|
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
|
|
np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 7)
|
|
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
|
|
np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
|
|
np.arange(9, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 8)
|
|
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5),
|
|
np.arange(5, 6), np.arange(6, 7), np.arange(7, 8),
|
|
np.arange(8, 9), np.arange(9, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 9)
|
|
desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4),
|
|
np.arange(4, 5), np.arange(5, 6), np.arange(6, 7),
|
|
np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 10)
|
|
desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
|
|
np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
|
|
np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
|
|
np.arange(9, 10)]
|
|
compare_results(res, desired)
|
|
|
|
res = array_split(a, 11)
|
|
desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
|
|
np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
|
|
np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
|
|
np.arange(9, 10), np.array([])]
|
|
compare_results(res, desired)
|
|
|
|
def test_integer_split_2D_rows(self):
|
|
a = np.array([np.arange(10), np.arange(10)])
|
|
res = array_split(a, 3, axis=0)
|
|
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
|
|
np.zeros((0, 10))]
|
|
compare_results(res, tgt)
|
|
assert_(a.dtype.type is res[-1].dtype.type)
|
|
|
|
# Same thing for manual splits:
|
|
res = array_split(a, [0, 1], axis=0)
|
|
tgt = [np.zeros((0, 10)), np.array([np.arange(10)]),
|
|
np.array([np.arange(10)])]
|
|
compare_results(res, tgt)
|
|
assert_(a.dtype.type is res[-1].dtype.type)
|
|
|
|
def test_integer_split_2D_cols(self):
|
|
a = np.array([np.arange(10), np.arange(10)])
|
|
res = array_split(a, 3, axis=-1)
|
|
desired = [np.array([np.arange(4), np.arange(4)]),
|
|
np.array([np.arange(4, 7), np.arange(4, 7)]),
|
|
np.array([np.arange(7, 10), np.arange(7, 10)])]
|
|
compare_results(res, desired)
|
|
|
|
def test_integer_split_2D_default(self):
|
|
""" This will fail if we change default axis
|
|
"""
|
|
a = np.array([np.arange(10), np.arange(10)])
|
|
res = array_split(a, 3)
|
|
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
|
|
np.zeros((0, 10))]
|
|
compare_results(res, tgt)
|
|
assert_(a.dtype.type is res[-1].dtype.type)
|
|
# perhaps should check higher dimensions
|
|
|
|
@pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
|
|
def test_integer_split_2D_rows_greater_max_int32(self):
|
|
a = np.broadcast_to([0], (1 << 32, 2))
|
|
res = array_split(a, 4)
|
|
chunk = np.broadcast_to([0], (1 << 30, 2))
|
|
tgt = [chunk] * 4
|
|
for i in range(len(tgt)):
|
|
assert_equal(res[i].shape, tgt[i].shape)
|
|
|
|
def test_index_split_simple(self):
|
|
a = np.arange(10)
|
|
indices = [1, 5, 7]
|
|
res = array_split(a, indices, axis=-1)
|
|
desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7),
|
|
np.arange(7, 10)]
|
|
compare_results(res, desired)
|
|
|
|
def test_index_split_low_bound(self):
|
|
a = np.arange(10)
|
|
indices = [0, 5, 7]
|
|
res = array_split(a, indices, axis=-1)
|
|
desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
|
|
np.arange(7, 10)]
|
|
compare_results(res, desired)
|
|
|
|
def test_index_split_high_bound(self):
|
|
a = np.arange(10)
|
|
indices = [0, 5, 7, 10, 12]
|
|
res = array_split(a, indices, axis=-1)
|
|
desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
|
|
np.arange(7, 10), np.array([]), np.array([])]
|
|
compare_results(res, desired)
|
|
|
|
|
|
class TestSplit:
|
|
# The split function is essentially the same as array_split,
|
|
# except that it test if splitting will result in an
|
|
# equal split. Only test for this case.
|
|
|
|
def test_equal_split(self):
|
|
a = np.arange(10)
|
|
res = split(a, 2)
|
|
desired = [np.arange(5), np.arange(5, 10)]
|
|
compare_results(res, desired)
|
|
|
|
def test_unequal_split(self):
|
|
a = np.arange(10)
|
|
assert_raises(ValueError, split, a, 3)
|
|
|
|
|
|
class TestColumnStack:
|
|
def test_non_iterable(self):
|
|
assert_raises(TypeError, column_stack, 1)
|
|
|
|
def test_1D_arrays(self):
|
|
# example from docstring
|
|
a = np.array((1, 2, 3))
|
|
b = np.array((2, 3, 4))
|
|
expected = np.array([[1, 2],
|
|
[2, 3],
|
|
[3, 4]])
|
|
actual = np.column_stack((a, b))
|
|
assert_equal(actual, expected)
|
|
|
|
def test_2D_arrays(self):
|
|
# same as hstack 2D docstring example
|
|
a = np.array([[1], [2], [3]])
|
|
b = np.array([[2], [3], [4]])
|
|
expected = np.array([[1, 2],
|
|
[2, 3],
|
|
[3, 4]])
|
|
actual = np.column_stack((a, b))
|
|
assert_equal(actual, expected)
|
|
|
|
def test_generator(self):
|
|
with assert_warns(FutureWarning):
|
|
column_stack((np.arange(3) for _ in range(2)))
|
|
|
|
|
|
class TestDstack:
|
|
def test_non_iterable(self):
|
|
assert_raises(TypeError, dstack, 1)
|
|
|
|
def test_0D_array(self):
|
|
a = np.array(1)
|
|
b = np.array(2)
|
|
res = dstack([a, b])
|
|
desired = np.array([[[1, 2]]])
|
|
assert_array_equal(res, desired)
|
|
|
|
def test_1D_array(self):
|
|
a = np.array([1])
|
|
b = np.array([2])
|
|
res = dstack([a, b])
|
|
desired = np.array([[[1, 2]]])
|
|
assert_array_equal(res, desired)
|
|
|
|
def test_2D_array(self):
|
|
a = np.array([[1], [2]])
|
|
b = np.array([[1], [2]])
|
|
res = dstack([a, b])
|
|
desired = np.array([[[1, 1]], [[2, 2, ]]])
|
|
assert_array_equal(res, desired)
|
|
|
|
def test_2D_array2(self):
|
|
a = np.array([1, 2])
|
|
b = np.array([1, 2])
|
|
res = dstack([a, b])
|
|
desired = np.array([[[1, 1], [2, 2]]])
|
|
assert_array_equal(res, desired)
|
|
|
|
def test_generator(self):
|
|
with assert_warns(FutureWarning):
|
|
dstack((np.arange(3) for _ in range(2)))
|
|
|
|
|
|
# array_split has more comprehensive test of splitting.
|
|
# only do simple test on hsplit, vsplit, and dsplit
|
|
class TestHsplit:
|
|
"""Only testing for integer splits.
|
|
|
|
"""
|
|
def test_non_iterable(self):
|
|
assert_raises(ValueError, hsplit, 1, 1)
|
|
|
|
def test_0D_array(self):
|
|
a = np.array(1)
|
|
try:
|
|
hsplit(a, 2)
|
|
assert_(0)
|
|
except ValueError:
|
|
pass
|
|
|
|
def test_1D_array(self):
|
|
a = np.array([1, 2, 3, 4])
|
|
res = hsplit(a, 2)
|
|
desired = [np.array([1, 2]), np.array([3, 4])]
|
|
compare_results(res, desired)
|
|
|
|
def test_2D_array(self):
|
|
a = np.array([[1, 2, 3, 4],
|
|
[1, 2, 3, 4]])
|
|
res = hsplit(a, 2)
|
|
desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])]
|
|
compare_results(res, desired)
|
|
|
|
|
|
class TestVsplit:
|
|
"""Only testing for integer splits.
|
|
|
|
"""
|
|
def test_non_iterable(self):
|
|
assert_raises(ValueError, vsplit, 1, 1)
|
|
|
|
def test_0D_array(self):
|
|
a = np.array(1)
|
|
assert_raises(ValueError, vsplit, a, 2)
|
|
|
|
def test_1D_array(self):
|
|
a = np.array([1, 2, 3, 4])
|
|
try:
|
|
vsplit(a, 2)
|
|
assert_(0)
|
|
except ValueError:
|
|
pass
|
|
|
|
def test_2D_array(self):
|
|
a = np.array([[1, 2, 3, 4],
|
|
[1, 2, 3, 4]])
|
|
res = vsplit(a, 2)
|
|
desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
|
|
compare_results(res, desired)
|
|
|
|
|
|
class TestDsplit:
|
|
# Only testing for integer splits.
|
|
def test_non_iterable(self):
|
|
assert_raises(ValueError, dsplit, 1, 1)
|
|
|
|
def test_0D_array(self):
|
|
a = np.array(1)
|
|
assert_raises(ValueError, dsplit, a, 2)
|
|
|
|
def test_1D_array(self):
|
|
a = np.array([1, 2, 3, 4])
|
|
assert_raises(ValueError, dsplit, a, 2)
|
|
|
|
def test_2D_array(self):
|
|
a = np.array([[1, 2, 3, 4],
|
|
[1, 2, 3, 4]])
|
|
try:
|
|
dsplit(a, 2)
|
|
assert_(0)
|
|
except ValueError:
|
|
pass
|
|
|
|
def test_3D_array(self):
|
|
a = np.array([[[1, 2, 3, 4],
|
|
[1, 2, 3, 4]],
|
|
[[1, 2, 3, 4],
|
|
[1, 2, 3, 4]]])
|
|
res = dsplit(a, 2)
|
|
desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
|
|
np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])]
|
|
compare_results(res, desired)
|
|
|
|
|
|
class TestSqueeze:
|
|
def test_basic(self):
|
|
from numpy.random import rand
|
|
|
|
a = rand(20, 10, 10, 1, 1)
|
|
b = rand(20, 1, 10, 1, 20)
|
|
c = rand(1, 1, 20, 10)
|
|
assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
|
|
assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
|
|
assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))
|
|
|
|
# Squeezing to 0-dim should still give an ndarray
|
|
a = [[[1.5]]]
|
|
res = np.squeeze(a)
|
|
assert_equal(res, 1.5)
|
|
assert_equal(res.ndim, 0)
|
|
assert_equal(type(res), np.ndarray)
|
|
|
|
|
|
class TestKron:
|
|
def test_basic(self):
|
|
# Using 0-dimensional ndarray
|
|
a = np.array(1)
|
|
b = np.array([[1, 2], [3, 4]])
|
|
k = np.array([[1, 2], [3, 4]])
|
|
assert_array_equal(np.kron(a, b), k)
|
|
a = np.array([[1, 2], [3, 4]])
|
|
b = np.array(1)
|
|
assert_array_equal(np.kron(a, b), k)
|
|
|
|
# Using 1-dimensional ndarray
|
|
a = np.array([3])
|
|
b = np.array([[1, 2], [3, 4]])
|
|
k = np.array([[3, 6], [9, 12]])
|
|
assert_array_equal(np.kron(a, b), k)
|
|
a = np.array([[1, 2], [3, 4]])
|
|
b = np.array([3])
|
|
assert_array_equal(np.kron(a, b), k)
|
|
|
|
# Using 3-dimensional ndarray
|
|
a = np.array([[[1]], [[2]]])
|
|
b = np.array([[1, 2], [3, 4]])
|
|
k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
|
|
assert_array_equal(np.kron(a, b), k)
|
|
a = np.array([[1, 2], [3, 4]])
|
|
b = np.array([[[1]], [[2]]])
|
|
k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
|
|
assert_array_equal(np.kron(a, b), k)
|
|
|
|
def test_return_type(self):
|
|
class myarray(np.ndarray):
|
|
__array_priority__ = 1.0
|
|
|
|
a = np.ones([2, 2])
|
|
ma = myarray(a.shape, a.dtype, a.data)
|
|
assert_equal(type(kron(a, a)), np.ndarray)
|
|
assert_equal(type(kron(ma, ma)), myarray)
|
|
assert_equal(type(kron(a, ma)), myarray)
|
|
assert_equal(type(kron(ma, a)), myarray)
|
|
|
|
@pytest.mark.parametrize(
|
|
"array_class", [np.asarray, np.mat]
|
|
)
|
|
def test_kron_smoke(self, array_class):
|
|
a = array_class(np.ones([3, 3]))
|
|
b = array_class(np.ones([3, 3]))
|
|
k = array_class(np.ones([9, 9]))
|
|
|
|
assert_array_equal(np.kron(a, b), k)
|
|
|
|
def test_kron_ma(self):
|
|
x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
|
|
k = np.ma.array(np.diag([1, 4, 4, 16]),
|
|
mask=~np.array(np.identity(4), dtype=bool))
|
|
|
|
assert_array_equal(k, np.kron(x, x))
|
|
|
|
@pytest.mark.parametrize(
|
|
"shape_a,shape_b", [
|
|
((1, 1), (1, 1)),
|
|
((1, 2, 3), (4, 5, 6)),
|
|
((2, 2), (2, 2, 2)),
|
|
((1, 0), (1, 1)),
|
|
((2, 0, 2), (2, 2)),
|
|
((2, 0, 0, 2), (2, 0, 2)),
|
|
])
|
|
def test_kron_shape(self, shape_a, shape_b):
|
|
a = np.ones(shape_a)
|
|
b = np.ones(shape_b)
|
|
normalised_shape_a = (1,) * max(0, len(shape_b)-len(shape_a)) + shape_a
|
|
normalised_shape_b = (1,) * max(0, len(shape_a)-len(shape_b)) + shape_b
|
|
expected_shape = np.multiply(normalised_shape_a, normalised_shape_b)
|
|
|
|
k = np.kron(a, b)
|
|
assert np.array_equal(
|
|
k.shape, expected_shape), "Unexpected shape from kron"
|
|
|
|
|
|
class TestTile:
|
|
def test_basic(self):
|
|
a = np.array([0, 1, 2])
|
|
b = [[1, 2], [3, 4]]
|
|
assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2])
|
|
assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]])
|
|
assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]])
|
|
assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
|
|
assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
|
|
assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4],
|
|
[1, 2, 1, 2], [3, 4, 3, 4]])
|
|
|
|
def test_tile_one_repetition_on_array_gh4679(self):
|
|
a = np.arange(5)
|
|
b = tile(a, 1)
|
|
b += 2
|
|
assert_equal(a, np.arange(5))
|
|
|
|
def test_empty(self):
|
|
a = np.array([[[]]])
|
|
b = np.array([[], []])
|
|
c = tile(b, 2).shape
|
|
d = tile(a, (3, 2, 5)).shape
|
|
assert_equal(c, (2, 0))
|
|
assert_equal(d, (3, 2, 0))
|
|
|
|
def test_kroncompare(self):
|
|
from numpy.random import randint
|
|
|
|
reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
|
|
shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
|
|
for s in shape:
|
|
b = randint(0, 10, size=s)
|
|
for r in reps:
|
|
a = np.ones(r, b.dtype)
|
|
large = tile(b, r)
|
|
klarge = kron(a, b)
|
|
assert_equal(large, klarge)
|
|
|
|
|
|
class TestMayShareMemory:
|
|
def test_basic(self):
|
|
d = np.ones((50, 60))
|
|
d2 = np.ones((30, 60, 6))
|
|
assert_(np.may_share_memory(d, d))
|
|
assert_(np.may_share_memory(d, d[::-1]))
|
|
assert_(np.may_share_memory(d, d[::2]))
|
|
assert_(np.may_share_memory(d, d[1:, ::-1]))
|
|
|
|
assert_(not np.may_share_memory(d[::-1], d2))
|
|
assert_(not np.may_share_memory(d[::2], d2))
|
|
assert_(not np.may_share_memory(d[1:, ::-1], d2))
|
|
assert_(np.may_share_memory(d2[1:, ::-1], d2))
|
|
|
|
|
|
# Utility
|
|
def compare_results(res, desired):
|
|
"""Compare lists of arrays."""
|
|
if len(res) != len(desired):
|
|
raise ValueError("Iterables have different lengths")
|
|
# See also PEP 618 for Python 3.10
|
|
for x, y in zip(res, desired):
|
|
assert_array_equal(x, y)
|