214 lines
6.0 KiB
Python
214 lines
6.0 KiB
Python
"""
|
|
Core eval alignment algorithms.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from functools import (
|
|
partial,
|
|
wraps,
|
|
)
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Callable,
|
|
Sequence,
|
|
)
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from pandas.errors import PerformanceWarning
|
|
from pandas.util._exceptions import find_stack_level
|
|
|
|
from pandas.core.dtypes.generic import (
|
|
ABCDataFrame,
|
|
ABCSeries,
|
|
)
|
|
|
|
from pandas.core.base import PandasObject
|
|
import pandas.core.common as com
|
|
from pandas.core.computation.common import result_type_many
|
|
|
|
if TYPE_CHECKING:
|
|
from pandas._typing import F
|
|
|
|
from pandas.core.generic import NDFrame
|
|
from pandas.core.indexes.api import Index
|
|
|
|
|
|
def _align_core_single_unary_op(
|
|
term,
|
|
) -> tuple[partial | type[NDFrame], dict[str, Index] | None]:
|
|
typ: partial | type[NDFrame]
|
|
axes: dict[str, Index] | None = None
|
|
|
|
if isinstance(term.value, np.ndarray):
|
|
typ = partial(np.asanyarray, dtype=term.value.dtype)
|
|
else:
|
|
typ = type(term.value)
|
|
if hasattr(term.value, "axes"):
|
|
axes = _zip_axes_from_type(typ, term.value.axes)
|
|
|
|
return typ, axes
|
|
|
|
|
|
def _zip_axes_from_type(
|
|
typ: type[NDFrame], new_axes: Sequence[Index]
|
|
) -> dict[str, Index]:
|
|
return {name: new_axes[i] for i, name in enumerate(typ._AXIS_ORDERS)}
|
|
|
|
|
|
def _any_pandas_objects(terms) -> bool:
|
|
"""
|
|
Check a sequence of terms for instances of PandasObject.
|
|
"""
|
|
return any(isinstance(term.value, PandasObject) for term in terms)
|
|
|
|
|
|
def _filter_special_cases(f) -> Callable[[F], F]:
|
|
@wraps(f)
|
|
def wrapper(terms):
|
|
# single unary operand
|
|
if len(terms) == 1:
|
|
return _align_core_single_unary_op(terms[0])
|
|
|
|
term_values = (term.value for term in terms)
|
|
|
|
# we don't have any pandas objects
|
|
if not _any_pandas_objects(terms):
|
|
return result_type_many(*term_values), None
|
|
|
|
return f(terms)
|
|
|
|
return wrapper
|
|
|
|
|
|
@_filter_special_cases
|
|
def _align_core(terms):
|
|
term_index = [i for i, term in enumerate(terms) if hasattr(term.value, "axes")]
|
|
term_dims = [terms[i].value.ndim for i in term_index]
|
|
|
|
from pandas import Series
|
|
|
|
ndims = Series(dict(zip(term_index, term_dims)))
|
|
|
|
# initial axes are the axes of the largest-axis'd term
|
|
biggest = terms[ndims.idxmax()].value
|
|
typ = biggest._constructor
|
|
axes = biggest.axes
|
|
naxes = len(axes)
|
|
gt_than_one_axis = naxes > 1
|
|
|
|
for value in (terms[i].value for i in term_index):
|
|
is_series = isinstance(value, ABCSeries)
|
|
is_series_and_gt_one_axis = is_series and gt_than_one_axis
|
|
|
|
for axis, items in enumerate(value.axes):
|
|
if is_series_and_gt_one_axis:
|
|
ax, itm = naxes - 1, value.index
|
|
else:
|
|
ax, itm = axis, items
|
|
|
|
if not axes[ax].is_(itm):
|
|
axes[ax] = axes[ax].join(itm, how="outer")
|
|
|
|
for i, ndim in ndims.items():
|
|
for axis, items in zip(range(ndim), axes):
|
|
ti = terms[i].value
|
|
|
|
if hasattr(ti, "reindex"):
|
|
transpose = isinstance(ti, ABCSeries) and naxes > 1
|
|
reindexer = axes[naxes - 1] if transpose else items
|
|
|
|
term_axis_size = len(ti.axes[axis])
|
|
reindexer_size = len(reindexer)
|
|
|
|
ordm = np.log10(max(1, abs(reindexer_size - term_axis_size)))
|
|
if ordm >= 1 and reindexer_size >= 10000:
|
|
w = (
|
|
f"Alignment difference on axis {axis} is larger "
|
|
f"than an order of magnitude on term {repr(terms[i].name)}, "
|
|
f"by more than {ordm:.4g}; performance may suffer."
|
|
)
|
|
warnings.warn(
|
|
w, category=PerformanceWarning, stacklevel=find_stack_level()
|
|
)
|
|
|
|
f = partial(ti.reindex, reindexer, axis=axis, copy=False)
|
|
|
|
terms[i].update(f())
|
|
|
|
terms[i].update(terms[i].value.values)
|
|
|
|
return typ, _zip_axes_from_type(typ, axes)
|
|
|
|
|
|
def align_terms(terms):
|
|
"""
|
|
Align a set of terms.
|
|
"""
|
|
try:
|
|
# flatten the parse tree (a nested list, really)
|
|
terms = list(com.flatten(terms))
|
|
except TypeError:
|
|
# can't iterate so it must just be a constant or single variable
|
|
if isinstance(terms.value, (ABCSeries, ABCDataFrame)):
|
|
typ = type(terms.value)
|
|
return typ, _zip_axes_from_type(typ, terms.value.axes)
|
|
return np.result_type(terms.type), None
|
|
|
|
# if all resolved variables are numeric scalars
|
|
if all(term.is_scalar for term in terms):
|
|
return result_type_many(*(term.value for term in terms)).type, None
|
|
|
|
# perform the main alignment
|
|
typ, axes = _align_core(terms)
|
|
return typ, axes
|
|
|
|
|
|
def reconstruct_object(typ, obj, axes, dtype):
|
|
"""
|
|
Reconstruct an object given its type, raw value, and possibly empty
|
|
(None) axes.
|
|
|
|
Parameters
|
|
----------
|
|
typ : object
|
|
A type
|
|
obj : object
|
|
The value to use in the type constructor
|
|
axes : dict
|
|
The axes to use to construct the resulting pandas object
|
|
|
|
Returns
|
|
-------
|
|
ret : typ
|
|
An object of type ``typ`` with the value `obj` and possible axes
|
|
`axes`.
|
|
"""
|
|
try:
|
|
typ = typ.type
|
|
except AttributeError:
|
|
pass
|
|
|
|
res_t = np.result_type(obj.dtype, dtype)
|
|
|
|
if not isinstance(typ, partial) and issubclass(typ, PandasObject):
|
|
return typ(obj, dtype=res_t, **axes)
|
|
|
|
# special case for pathological things like ~True/~False
|
|
if hasattr(res_t, "type") and typ == np.bool_ and res_t != np.bool_:
|
|
ret_value = res_t.type(obj)
|
|
else:
|
|
ret_value = typ(obj).astype(res_t)
|
|
# The condition is to distinguish 0-dim array (returned in case of
|
|
# scalar) and 1 element array
|
|
# e.g. np.array(0) and np.array([0])
|
|
if (
|
|
len(obj.shape) == 1
|
|
and len(obj) == 1
|
|
and not isinstance(ret_value, np.ndarray)
|
|
):
|
|
ret_value = np.array([ret_value]).astype(res_t)
|
|
|
|
return ret_value
|