Inzynierka/Lib/site-packages/pandas/core/computation/ops.py
2023-06-02 12:51:02 +02:00

621 lines
16 KiB
Python

"""
Operator classes for eval.
"""
from __future__ import annotations
from datetime import datetime
from functools import partial
import operator
from typing import (
Callable,
Iterable,
Iterator,
Literal,
)
import numpy as np
from pandas._libs.tslibs import Timestamp
from pandas.core.dtypes.common import (
is_list_like,
is_scalar,
)
import pandas.core.common as com
from pandas.core.computation.common import (
ensure_decoded,
result_type_many,
)
from pandas.core.computation.scope import DEFAULT_GLOBALS
from pandas.io.formats.printing import (
pprint_thing,
pprint_thing_encoded,
)
REDUCTIONS = ("sum", "prod", "min", "max")
_unary_math_ops = (
"sin",
"cos",
"exp",
"log",
"expm1",
"log1p",
"sqrt",
"sinh",
"cosh",
"tanh",
"arcsin",
"arccos",
"arctan",
"arccosh",
"arcsinh",
"arctanh",
"abs",
"log10",
"floor",
"ceil",
)
_binary_math_ops = ("arctan2",)
MATHOPS = _unary_math_ops + _binary_math_ops
LOCAL_TAG = "__pd_eval_local_"
class Term:
def __new__(cls, name, env, side=None, encoding=None):
klass = Constant if not isinstance(name, str) else cls
# error: Argument 2 for "super" not an instance of argument 1
supr_new = super(Term, klass).__new__ # type: ignore[misc]
return supr_new(klass)
is_local: bool
def __init__(self, name, env, side=None, encoding=None) -> None:
# name is a str for Term, but may be something else for subclasses
self._name = name
self.env = env
self.side = side
tname = str(name)
self.is_local = tname.startswith(LOCAL_TAG) or tname in DEFAULT_GLOBALS
self._value = self._resolve_name()
self.encoding = encoding
@property
def local_name(self) -> str:
return self.name.replace(LOCAL_TAG, "")
def __repr__(self) -> str:
return pprint_thing(self.name)
def __call__(self, *args, **kwargs):
return self.value
def evaluate(self, *args, **kwargs) -> Term:
return self
def _resolve_name(self):
local_name = str(self.local_name)
is_local = self.is_local
if local_name in self.env.scope and isinstance(
self.env.scope[local_name], type
):
is_local = False
res = self.env.resolve(local_name, is_local=is_local)
self.update(res)
if hasattr(res, "ndim") and res.ndim > 2:
raise NotImplementedError(
"N-dimensional objects, where N > 2, are not supported with eval"
)
return res
def update(self, value) -> None:
"""
search order for local (i.e., @variable) variables:
scope, key_variable
[('locals', 'local_name'),
('globals', 'local_name'),
('locals', 'key'),
('globals', 'key')]
"""
key = self.name
# if it's a variable name (otherwise a constant)
if isinstance(key, str):
self.env.swapkey(self.local_name, key, new_value=value)
self.value = value
@property
def is_scalar(self) -> bool:
return is_scalar(self._value)
@property
def type(self):
try:
# potentially very slow for large, mixed dtype frames
return self._value.values.dtype
except AttributeError:
try:
# ndarray
return self._value.dtype
except AttributeError:
# scalar
return type(self._value)
return_type = type
@property
def raw(self) -> str:
return f"{type(self).__name__}(name={repr(self.name)}, type={self.type})"
@property
def is_datetime(self) -> bool:
try:
t = self.type.type
except AttributeError:
t = self.type
return issubclass(t, (datetime, np.datetime64))
@property
def value(self):
return self._value
@value.setter
def value(self, new_value) -> None:
self._value = new_value
@property
def name(self):
return self._name
@property
def ndim(self) -> int:
return self._value.ndim
class Constant(Term):
def __init__(self, value, env, side=None, encoding=None) -> None:
super().__init__(value, env, side=side, encoding=encoding)
def _resolve_name(self):
return self._name
@property
def name(self):
return self.value
def __repr__(self) -> str:
# in python 2 str() of float
# can truncate shorter than repr()
return repr(self.name)
_bool_op_map = {"not": "~", "and": "&", "or": "|"}
class Op:
"""
Hold an operator of arbitrary arity.
"""
op: str
def __init__(self, op: str, operands: Iterable[Term | Op], encoding=None) -> None:
self.op = _bool_op_map.get(op, op)
self.operands = operands
self.encoding = encoding
def __iter__(self) -> Iterator:
return iter(self.operands)
def __repr__(self) -> str:
"""
Print a generic n-ary operator and its operands using infix notation.
"""
# recurse over the operands
parened = (f"({pprint_thing(opr)})" for opr in self.operands)
return pprint_thing(f" {self.op} ".join(parened))
@property
def return_type(self):
# clobber types to bool if the op is a boolean operator
if self.op in (CMP_OPS_SYMS + BOOL_OPS_SYMS):
return np.bool_
return result_type_many(*(term.type for term in com.flatten(self)))
@property
def has_invalid_return_type(self) -> bool:
types = self.operand_types
obj_dtype_set = frozenset([np.dtype("object")])
return self.return_type == object and types - obj_dtype_set
@property
def operand_types(self):
return frozenset(term.type for term in com.flatten(self))
@property
def is_scalar(self) -> bool:
return all(operand.is_scalar for operand in self.operands)
@property
def is_datetime(self) -> bool:
try:
t = self.return_type.type
except AttributeError:
t = self.return_type
return issubclass(t, (datetime, np.datetime64))
def _in(x, y):
"""
Compute the vectorized membership of ``x in y`` if possible, otherwise
use Python.
"""
try:
return x.isin(y)
except AttributeError:
if is_list_like(x):
try:
return y.isin(x)
except AttributeError:
pass
return x in y
def _not_in(x, y):
"""
Compute the vectorized membership of ``x not in y`` if possible,
otherwise use Python.
"""
try:
return ~x.isin(y)
except AttributeError:
if is_list_like(x):
try:
return ~y.isin(x)
except AttributeError:
pass
return x not in y
CMP_OPS_SYMS = (">", "<", ">=", "<=", "==", "!=", "in", "not in")
_cmp_ops_funcs = (
operator.gt,
operator.lt,
operator.ge,
operator.le,
operator.eq,
operator.ne,
_in,
_not_in,
)
_cmp_ops_dict = dict(zip(CMP_OPS_SYMS, _cmp_ops_funcs))
BOOL_OPS_SYMS = ("&", "|", "and", "or")
_bool_ops_funcs = (operator.and_, operator.or_, operator.and_, operator.or_)
_bool_ops_dict = dict(zip(BOOL_OPS_SYMS, _bool_ops_funcs))
ARITH_OPS_SYMS = ("+", "-", "*", "/", "**", "//", "%")
_arith_ops_funcs = (
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.pow,
operator.floordiv,
operator.mod,
)
_arith_ops_dict = dict(zip(ARITH_OPS_SYMS, _arith_ops_funcs))
SPECIAL_CASE_ARITH_OPS_SYMS = ("**", "//", "%")
_special_case_arith_ops_funcs = (operator.pow, operator.floordiv, operator.mod)
_special_case_arith_ops_dict = dict(
zip(SPECIAL_CASE_ARITH_OPS_SYMS, _special_case_arith_ops_funcs)
)
_binary_ops_dict = {}
for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict):
_binary_ops_dict.update(d)
def _cast_inplace(terms, acceptable_dtypes, dtype) -> None:
"""
Cast an expression inplace.
Parameters
----------
terms : Op
The expression that should cast.
acceptable_dtypes : list of acceptable numpy.dtype
Will not cast if term's dtype in this list.
dtype : str or numpy.dtype
The dtype to cast to.
"""
dt = np.dtype(dtype)
for term in terms:
if term.type in acceptable_dtypes:
continue
try:
new_value = term.value.astype(dt)
except AttributeError:
new_value = dt.type(term.value)
term.update(new_value)
def is_term(obj) -> bool:
return isinstance(obj, Term)
class BinOp(Op):
"""
Hold a binary operator and its operands.
Parameters
----------
op : str
lhs : Term or Op
rhs : Term or Op
"""
def __init__(self, op: str, lhs, rhs) -> None:
super().__init__(op, (lhs, rhs))
self.lhs = lhs
self.rhs = rhs
self._disallow_scalar_only_bool_ops()
self.convert_values()
try:
self.func = _binary_ops_dict[op]
except KeyError as err:
# has to be made a list for python3
keys = list(_binary_ops_dict.keys())
raise ValueError(
f"Invalid binary operator {repr(op)}, valid operators are {keys}"
) from err
def __call__(self, env):
"""
Recursively evaluate an expression in Python space.
Parameters
----------
env : Scope
Returns
-------
object
The result of an evaluated expression.
"""
# recurse over the left/right nodes
left = self.lhs(env)
right = self.rhs(env)
return self.func(left, right)
def evaluate(self, env, engine: str, parser, term_type, eval_in_python):
"""
Evaluate a binary operation *before* being passed to the engine.
Parameters
----------
env : Scope
engine : str
parser : str
term_type : type
eval_in_python : list
Returns
-------
term_type
The "pre-evaluated" expression as an instance of ``term_type``
"""
if engine == "python":
res = self(env)
else:
# recurse over the left/right nodes
left = self.lhs.evaluate(
env,
engine=engine,
parser=parser,
term_type=term_type,
eval_in_python=eval_in_python,
)
right = self.rhs.evaluate(
env,
engine=engine,
parser=parser,
term_type=term_type,
eval_in_python=eval_in_python,
)
# base cases
if self.op in eval_in_python:
res = self.func(left.value, right.value)
else:
from pandas.core.computation.eval import eval
res = eval(self, local_dict=env, engine=engine, parser=parser)
name = env.add_tmp(res)
return term_type(name, env=env)
def convert_values(self) -> None:
"""
Convert datetimes to a comparable value in an expression.
"""
def stringify(value):
encoder: Callable
if self.encoding is not None:
encoder = partial(pprint_thing_encoded, encoding=self.encoding)
else:
encoder = pprint_thing
return encoder(value)
lhs, rhs = self.lhs, self.rhs
if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.is_scalar:
v = rhs.value
if isinstance(v, (int, float)):
v = stringify(v)
v = Timestamp(ensure_decoded(v))
if v.tz is not None:
v = v.tz_convert("UTC")
self.rhs.update(v)
if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.is_scalar:
v = lhs.value
if isinstance(v, (int, float)):
v = stringify(v)
v = Timestamp(ensure_decoded(v))
if v.tz is not None:
v = v.tz_convert("UTC")
self.lhs.update(v)
def _disallow_scalar_only_bool_ops(self):
rhs = self.rhs
lhs = self.lhs
# GH#24883 unwrap dtype if necessary to ensure we have a type object
rhs_rt = rhs.return_type
rhs_rt = getattr(rhs_rt, "type", rhs_rt)
lhs_rt = lhs.return_type
lhs_rt = getattr(lhs_rt, "type", lhs_rt)
if (
(lhs.is_scalar or rhs.is_scalar)
and self.op in _bool_ops_dict
and (
not (
issubclass(rhs_rt, (bool, np.bool_))
and issubclass(lhs_rt, (bool, np.bool_))
)
)
):
raise NotImplementedError("cannot evaluate scalar only bool ops")
def isnumeric(dtype) -> bool:
return issubclass(np.dtype(dtype).type, np.number)
class Div(BinOp):
"""
Div operator to special case casting.
Parameters
----------
lhs, rhs : Term or Op
The Terms or Ops in the ``/`` expression.
"""
def __init__(self, lhs, rhs) -> None:
super().__init__("/", lhs, rhs)
if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type):
raise TypeError(
f"unsupported operand type(s) for {self.op}: "
f"'{lhs.return_type}' and '{rhs.return_type}'"
)
# do not upcast float32s to float64 un-necessarily
acceptable_dtypes = [np.float32, np.float_]
_cast_inplace(com.flatten(self), acceptable_dtypes, np.float_)
UNARY_OPS_SYMS = ("+", "-", "~", "not")
_unary_ops_funcs = (operator.pos, operator.neg, operator.invert, operator.invert)
_unary_ops_dict = dict(zip(UNARY_OPS_SYMS, _unary_ops_funcs))
class UnaryOp(Op):
"""
Hold a unary operator and its operands.
Parameters
----------
op : str
The token used to represent the operator.
operand : Term or Op
The Term or Op operand to the operator.
Raises
------
ValueError
* If no function associated with the passed operator token is found.
"""
def __init__(self, op: Literal["+", "-", "~", "not"], operand) -> None:
super().__init__(op, (operand,))
self.operand = operand
try:
self.func = _unary_ops_dict[op]
except KeyError as err:
raise ValueError(
f"Invalid unary operator {repr(op)}, "
f"valid operators are {UNARY_OPS_SYMS}"
) from err
def __call__(self, env) -> MathCall:
operand = self.operand(env)
# error: Cannot call function of unknown type
return self.func(operand) # type: ignore[operator]
def __repr__(self) -> str:
return pprint_thing(f"{self.op}({self.operand})")
@property
def return_type(self) -> np.dtype:
operand = self.operand
if operand.return_type == np.dtype("bool"):
return np.dtype("bool")
if isinstance(operand, Op) and (
operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict
):
return np.dtype("bool")
return np.dtype("int")
class MathCall(Op):
def __init__(self, func, args) -> None:
super().__init__(func.name, args)
self.func = func
def __call__(self, env):
# error: "Op" not callable
operands = [op(env) for op in self.operands] # type: ignore[operator]
with np.errstate(all="ignore"):
return self.func.func(*operands)
def __repr__(self) -> str:
operands = map(str, self.operands)
return pprint_thing(f"{self.op}({','.join(operands)})")
class FuncNode:
def __init__(self, name: str) -> None:
if name not in MATHOPS:
raise ValueError(f'"{name}" is not a supported function')
self.name = name
self.func = getattr(np, name)
def __call__(self, *args):
return MathCall(self, args)