Inzynierka/Lib/site-packages/pandas/core/internals/managers.py
2023-06-02 12:51:02 +02:00

2344 lines
78 KiB
Python

from __future__ import annotations
import itertools
from typing import (
Any,
Callable,
Hashable,
Literal,
Sequence,
TypeVar,
cast,
)
import warnings
import weakref
import numpy as np
from pandas._config import using_copy_on_write
from pandas._libs import (
algos as libalgos,
internals as libinternals,
lib,
)
from pandas._libs.internals import (
BlockPlacement,
BlockValuesRefs,
)
from pandas._typing import (
ArrayLike,
AxisInt,
DtypeObj,
QuantileInterpolation,
Shape,
npt,
type_t,
)
from pandas.errors import PerformanceWarning
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import validate_bool_kwarg
from pandas.core.dtypes.cast import infer_dtype_from_scalar
from pandas.core.dtypes.common import (
ensure_platform_int,
is_1d_only_ea_dtype,
is_dtype_equal,
is_list_like,
)
from pandas.core.dtypes.dtypes import ExtensionDtype
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCSeries,
)
from pandas.core.dtypes.missing import (
array_equals,
isna,
)
import pandas.core.algorithms as algos
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
from pandas.core.arrays.sparse import SparseDtype
import pandas.core.common as com
from pandas.core.construction import (
ensure_wrapped_if_datetimelike,
extract_array,
)
from pandas.core.indexers import maybe_convert_indices
from pandas.core.indexes.api import (
Index,
ensure_index,
)
from pandas.core.internals.base import (
DataManager,
SingleDataManager,
interleaved_dtype,
)
from pandas.core.internals.blocks import (
Block,
NumpyBlock,
ensure_block_shape,
extend_blocks,
get_block_type,
new_block,
new_block_2d,
)
from pandas.core.internals.ops import (
blockwise_all,
operate_blockwise,
)
T = TypeVar("T", bound="BaseBlockManager")
class BaseBlockManager(DataManager):
"""
Core internal data structure to implement DataFrame, Series, etc.
Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a
lightweight blocked set of labeled data to be manipulated by the DataFrame
public API class
Attributes
----------
shape
ndim
axes
values
items
Methods
-------
set_axis(axis, new_labels)
copy(deep=True)
get_dtypes
apply(func, axes, block_filter_fn)
get_bool_data
get_numeric_data
get_slice(slice_like, axis)
get(label)
iget(loc)
take(indexer, axis)
reindex_axis(new_labels, axis)
reindex_indexer(new_labels, indexer, axis)
delete(label)
insert(loc, label, value)
set(label, value)
Parameters
----------
blocks: Sequence of Block
axes: Sequence of Index
verify_integrity: bool, default True
Notes
-----
This is *not* a public API class
"""
__slots__ = ()
_blknos: npt.NDArray[np.intp]
_blklocs: npt.NDArray[np.intp]
blocks: tuple[Block, ...]
axes: list[Index]
@property
def ndim(self) -> int:
raise NotImplementedError
_known_consolidated: bool
_is_consolidated: bool
def __init__(self, blocks, axes, verify_integrity: bool = True) -> None:
raise NotImplementedError
@classmethod
def from_blocks(cls: type_t[T], blocks: list[Block], axes: list[Index]) -> T:
raise NotImplementedError
@property
def blknos(self) -> npt.NDArray[np.intp]:
"""
Suppose we want to find the array corresponding to our i'th column.
blknos[i] identifies the block from self.blocks that contains this column.
blklocs[i] identifies the column of interest within
self.blocks[self.blknos[i]]
"""
if self._blknos is None:
# Note: these can be altered by other BlockManager methods.
self._rebuild_blknos_and_blklocs()
return self._blknos
@property
def blklocs(self) -> npt.NDArray[np.intp]:
"""
See blknos.__doc__
"""
if self._blklocs is None:
# Note: these can be altered by other BlockManager methods.
self._rebuild_blknos_and_blklocs()
return self._blklocs
def make_empty(self: T, axes=None) -> T:
"""return an empty BlockManager with the items axis of len 0"""
if axes is None:
axes = [Index([])] + self.axes[1:]
# preserve dtype if possible
if self.ndim == 1:
assert isinstance(self, SingleBlockManager) # for mypy
blk = self.blocks[0]
arr = blk.values[:0]
bp = BlockPlacement(slice(0, 0))
nb = blk.make_block_same_class(arr, placement=bp)
blocks = [nb]
else:
blocks = []
return type(self).from_blocks(blocks, axes)
def __nonzero__(self) -> bool:
return True
# Python3 compat
__bool__ = __nonzero__
def _normalize_axis(self, axis: AxisInt) -> int:
# switch axis to follow BlockManager logic
if self.ndim == 2:
axis = 1 if axis == 0 else 0
return axis
def set_axis(self, axis: AxisInt, new_labels: Index) -> None:
# Caller is responsible for ensuring we have an Index object.
self._validate_set_axis(axis, new_labels)
self.axes[axis] = new_labels
@property
def is_single_block(self) -> bool:
# Assumes we are 2D; overridden by SingleBlockManager
return len(self.blocks) == 1
@property
def items(self) -> Index:
return self.axes[0]
def _has_no_reference(self, i: int) -> bool:
"""
Check for column `i` if it has references.
(whether it references another array or is itself being referenced)
Returns True if the column has no references.
"""
blkno = self.blknos[i]
return self._has_no_reference_block(blkno)
def _has_no_reference_block(self, blkno: int) -> bool:
"""
Check for block `i` if it has references.
(whether it references another array or is itself being referenced)
Returns True if the block has no references.
"""
return not self.blocks[blkno].refs.has_reference()
def add_references(self, mgr: BaseBlockManager) -> None:
"""
Adds the references from one manager to another. We assume that both
managers have the same block structure.
"""
if len(self.blocks) != len(mgr.blocks):
# If block structure changes, then we made a copy
return
for i, blk in enumerate(self.blocks):
blk.refs = mgr.blocks[i].refs
# Argument 1 to "add_reference" of "BlockValuesRefs" has incompatible type
# "Block"; expected "SharedBlock"
blk.refs.add_reference(blk) # type: ignore[arg-type]
def references_same_values(self, mgr: BaseBlockManager, blkno: int) -> bool:
"""
Checks if two blocks from two different block managers reference the
same underlying values.
"""
ref = weakref.ref(self.blocks[blkno])
return ref in mgr.blocks[blkno].refs.referenced_blocks
def get_dtypes(self):
dtypes = np.array([blk.dtype for blk in self.blocks])
return dtypes.take(self.blknos)
@property
def arrays(self) -> list[ArrayLike]:
"""
Quick access to the backing arrays of the Blocks.
Only for compatibility with ArrayManager for testing convenience.
Not to be used in actual code, and return value is not the same as the
ArrayManager method (list of 1D arrays vs iterator of 2D ndarrays / 1D EAs).
Warning! The returned arrays don't handle Copy-on-Write, so this should
be used with caution (only in read-mode).
"""
return [blk.values for blk in self.blocks]
def __repr__(self) -> str:
output = type(self).__name__
for i, ax in enumerate(self.axes):
if i == 0:
output += f"\nItems: {ax}"
else:
output += f"\nAxis {i}: {ax}"
for block in self.blocks:
output += f"\n{block}"
return output
def apply(
self: T,
f,
align_keys: list[str] | None = None,
**kwargs,
) -> T:
"""
Iterate over the blocks, collect and create a new BlockManager.
Parameters
----------
f : str or callable
Name of the Block method to apply.
align_keys: List[str] or None, default None
**kwargs
Keywords to pass to `f`
Returns
-------
BlockManager
"""
assert "filter" not in kwargs
align_keys = align_keys or []
result_blocks: list[Block] = []
# fillna: Series/DataFrame is responsible for making sure value is aligned
aligned_args = {k: kwargs[k] for k in align_keys}
for b in self.blocks:
if aligned_args:
for k, obj in aligned_args.items():
if isinstance(obj, (ABCSeries, ABCDataFrame)):
# The caller is responsible for ensuring that
# obj.axes[-1].equals(self.items)
if obj.ndim == 1:
kwargs[k] = obj.iloc[b.mgr_locs.indexer]._values
else:
kwargs[k] = obj.iloc[:, b.mgr_locs.indexer]._values
else:
# otherwise we have an ndarray
kwargs[k] = obj[b.mgr_locs.indexer]
if callable(f):
applied = b.apply(f, **kwargs)
else:
applied = getattr(b, f)(**kwargs)
result_blocks = extend_blocks(applied, result_blocks)
out = type(self).from_blocks(result_blocks, self.axes)
return out
def where(self: T, other, cond, align: bool) -> T:
if align:
align_keys = ["other", "cond"]
else:
align_keys = ["cond"]
other = extract_array(other, extract_numpy=True)
return self.apply(
"where",
align_keys=align_keys,
other=other,
cond=cond,
using_cow=using_copy_on_write(),
)
def round(self: T, decimals: int, using_cow: bool = False) -> T:
return self.apply(
"round",
decimals=decimals,
using_cow=using_cow,
)
def setitem(self: T, indexer, value) -> T:
"""
Set values with indexer.
For SingleBlockManager, this backs s[indexer] = value
"""
if isinstance(indexer, np.ndarray) and indexer.ndim > self.ndim:
raise ValueError(f"Cannot set values with ndim > {self.ndim}")
if using_copy_on_write() and not self._has_no_reference(0):
# if being referenced -> perform Copy-on-Write and clear the reference
# this method is only called if there is a single block -> hardcoded 0
self = self.copy()
return self.apply("setitem", indexer=indexer, value=value)
def putmask(self, mask, new, align: bool = True):
if align:
align_keys = ["new", "mask"]
else:
align_keys = ["mask"]
new = extract_array(new, extract_numpy=True)
return self.apply(
"putmask",
align_keys=align_keys,
mask=mask,
new=new,
using_cow=using_copy_on_write(),
)
def diff(self: T, n: int, axis: AxisInt) -> T:
# only reached with self.ndim == 2 and axis == 1
axis = self._normalize_axis(axis)
return self.apply("diff", n=n, axis=axis)
def interpolate(self: T, inplace: bool, **kwargs) -> T:
return self.apply(
"interpolate", inplace=inplace, **kwargs, using_cow=using_copy_on_write()
)
def shift(self: T, periods: int, axis: AxisInt, fill_value) -> T:
axis = self._normalize_axis(axis)
if fill_value is lib.no_default:
fill_value = None
return self.apply("shift", periods=periods, axis=axis, fill_value=fill_value)
def fillna(self: T, value, limit, inplace: bool, downcast) -> T:
if limit is not None:
# Do this validation even if we go through one of the no-op paths
limit = libalgos.validate_limit(None, limit=limit)
return self.apply(
"fillna",
value=value,
limit=limit,
inplace=inplace,
downcast=downcast,
using_cow=using_copy_on_write(),
)
def astype(self: T, dtype, copy: bool | None = False, errors: str = "raise") -> T:
if copy is None:
if using_copy_on_write():
copy = False
else:
copy = True
elif using_copy_on_write():
copy = False
return self.apply(
"astype",
dtype=dtype,
copy=copy,
errors=errors,
using_cow=using_copy_on_write(),
)
def convert(self: T, copy: bool | None) -> T:
if copy is None:
if using_copy_on_write():
copy = False
else:
copy = True
elif using_copy_on_write():
copy = False
return self.apply("convert", copy=copy, using_cow=using_copy_on_write())
def replace(self: T, to_replace, value, inplace: bool) -> T:
inplace = validate_bool_kwarg(inplace, "inplace")
# NDFrame.replace ensures the not-is_list_likes here
assert not is_list_like(to_replace)
assert not is_list_like(value)
return self.apply(
"replace",
to_replace=to_replace,
value=value,
inplace=inplace,
using_cow=using_copy_on_write(),
)
def replace_regex(self, **kwargs):
return self.apply("_replace_regex", **kwargs, using_cow=using_copy_on_write())
def replace_list(
self: T,
src_list: list[Any],
dest_list: list[Any],
inplace: bool = False,
regex: bool = False,
) -> T:
"""do a list replace"""
inplace = validate_bool_kwarg(inplace, "inplace")
bm = self.apply(
"replace_list",
src_list=src_list,
dest_list=dest_list,
inplace=inplace,
regex=regex,
using_cow=using_copy_on_write(),
)
bm._consolidate_inplace()
return bm
def to_native_types(self: T, **kwargs) -> T:
"""
Convert values to native types (strings / python objects) that are used
in formatting (repr / csv).
"""
return self.apply("to_native_types", **kwargs)
@property
def is_numeric_mixed_type(self) -> bool:
return all(block.is_numeric for block in self.blocks)
@property
def any_extension_types(self) -> bool:
"""Whether any of the blocks in this manager are extension blocks"""
return any(block.is_extension for block in self.blocks)
@property
def is_view(self) -> bool:
"""return a boolean if we are a single block and are a view"""
if len(self.blocks) == 1:
return self.blocks[0].is_view
# It is technically possible to figure out which blocks are views
# e.g. [ b.values.base is not None for b in self.blocks ]
# but then we have the case of possibly some blocks being a view
# and some blocks not. setting in theory is possible on the non-view
# blocks w/o causing a SettingWithCopy raise/warn. But this is a bit
# complicated
return False
def _get_data_subset(self: T, predicate: Callable) -> T:
blocks = [blk for blk in self.blocks if predicate(blk.values)]
return self._combine(blocks, copy=False)
def get_bool_data(self: T, copy: bool = False) -> T:
"""
Select blocks that are bool-dtype and columns from object-dtype blocks
that are all-bool.
Parameters
----------
copy : bool, default False
Whether to copy the blocks
"""
new_blocks = []
for blk in self.blocks:
if blk.dtype == bool:
new_blocks.append(blk)
elif blk.is_object:
nbs = blk._split()
for nb in nbs:
if nb.is_bool:
new_blocks.append(nb)
return self._combine(new_blocks, copy)
def get_numeric_data(self: T, copy: bool = False) -> T:
"""
Parameters
----------
copy : bool, default False
Whether to copy the blocks
"""
numeric_blocks = [blk for blk in self.blocks if blk.is_numeric]
if len(numeric_blocks) == len(self.blocks):
# Avoid somewhat expensive _combine
if copy:
return self.copy(deep=True)
return self
return self._combine(numeric_blocks, copy)
def _combine(
self: T, blocks: list[Block], copy: bool = True, index: Index | None = None
) -> T:
"""return a new manager with the blocks"""
if len(blocks) == 0:
if self.ndim == 2:
# retain our own Index dtype
if index is not None:
axes = [self.items[:0], index]
else:
axes = [self.items[:0]] + self.axes[1:]
return self.make_empty(axes)
return self.make_empty()
# FIXME: optimization potential
indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks]))
inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0])
new_blocks: list[Block] = []
# TODO(CoW) we could optimize here if we know that the passed blocks
# are fully "owned" (eg created from an operation, not coming from
# an existing manager)
for b in blocks:
nb = b.copy(deep=copy)
nb.mgr_locs = BlockPlacement(inv_indexer[nb.mgr_locs.indexer])
new_blocks.append(nb)
axes = list(self.axes)
if index is not None:
axes[-1] = index
axes[0] = self.items.take(indexer)
return type(self).from_blocks(new_blocks, axes)
@property
def nblocks(self) -> int:
return len(self.blocks)
def copy(self: T, deep: bool | None | Literal["all"] = True) -> T:
"""
Make deep or shallow copy of BlockManager
Parameters
----------
deep : bool, string or None, default True
If False or None, return a shallow copy (do not copy data)
If 'all', copy data and a deep copy of the index
Returns
-------
BlockManager
"""
if deep is None:
if using_copy_on_write():
# use shallow copy
deep = False
else:
# preserve deep copy for BlockManager with copy=None
deep = True
# this preserves the notion of view copying of axes
if deep:
# hit in e.g. tests.io.json.test_pandas
def copy_func(ax):
return ax.copy(deep=True) if deep == "all" else ax.view()
new_axes = [copy_func(ax) for ax in self.axes]
else:
new_axes = list(self.axes)
res = self.apply("copy", deep=deep)
res.axes = new_axes
if self.ndim > 1:
# Avoid needing to re-compute these
blknos = self._blknos
if blknos is not None:
res._blknos = blknos.copy()
res._blklocs = self._blklocs.copy()
if deep:
res._consolidate_inplace()
return res
def consolidate(self: T) -> T:
"""
Join together blocks having same dtype
Returns
-------
y : BlockManager
"""
if self.is_consolidated():
return self
bm = type(self)(self.blocks, self.axes, verify_integrity=False)
bm._is_consolidated = False
bm._consolidate_inplace()
return bm
def reindex_indexer(
self: T,
new_axis: Index,
indexer: npt.NDArray[np.intp] | None,
axis: AxisInt,
fill_value=None,
allow_dups: bool = False,
copy: bool | None = True,
only_slice: bool = False,
*,
use_na_proxy: bool = False,
) -> T:
"""
Parameters
----------
new_axis : Index
indexer : ndarray[intp] or None
axis : int
fill_value : object, default None
allow_dups : bool, default False
copy : bool or None, default True
If None, regard as False to get shallow copy.
only_slice : bool, default False
Whether to take views, not copies, along columns.
use_na_proxy : bool, default False
Whether to use a np.void ndarray for newly introduced columns.
pandas-indexer with -1's only.
"""
if copy is None:
if using_copy_on_write():
# use shallow copy
copy = False
else:
# preserve deep copy for BlockManager with copy=None
copy = True
if indexer is None:
if new_axis is self.axes[axis] and not copy:
return self
result = self.copy(deep=copy)
result.axes = list(self.axes)
result.axes[axis] = new_axis
return result
# Should be intp, but in some cases we get int64 on 32bit builds
assert isinstance(indexer, np.ndarray)
# some axes don't allow reindexing with dups
if not allow_dups:
self.axes[axis]._validate_can_reindex(indexer)
if axis >= self.ndim:
raise IndexError("Requested axis not found in manager")
if axis == 0:
new_blocks = self._slice_take_blocks_ax0(
indexer,
fill_value=fill_value,
only_slice=only_slice,
use_na_proxy=use_na_proxy,
)
else:
new_blocks = [
blk.take_nd(
indexer,
axis=1,
fill_value=(
fill_value if fill_value is not None else blk.fill_value
),
)
for blk in self.blocks
]
new_axes = list(self.axes)
new_axes[axis] = new_axis
new_mgr = type(self).from_blocks(new_blocks, new_axes)
if axis == 1:
# We can avoid the need to rebuild these
new_mgr._blknos = self.blknos.copy()
new_mgr._blklocs = self.blklocs.copy()
return new_mgr
def _slice_take_blocks_ax0(
self,
slice_or_indexer: slice | np.ndarray,
fill_value=lib.no_default,
only_slice: bool = False,
*,
use_na_proxy: bool = False,
) -> list[Block]:
"""
Slice/take blocks along axis=0.
Overloaded for SingleBlock
Parameters
----------
slice_or_indexer : slice or np.ndarray[int64]
fill_value : scalar, default lib.no_default
only_slice : bool, default False
If True, we always return views on existing arrays, never copies.
This is used when called from ops.blockwise.operate_blockwise.
use_na_proxy : bool, default False
Whether to use a np.void ndarray for newly introduced columns.
Returns
-------
new_blocks : list of Block
"""
allow_fill = fill_value is not lib.no_default
sl_type, slobj, sllen = _preprocess_slice_or_indexer(
slice_or_indexer, self.shape[0], allow_fill=allow_fill
)
if self.is_single_block:
blk = self.blocks[0]
if sl_type == "slice":
# GH#32959 EABlock would fail since we can't make 0-width
# TODO(EA2D): special casing unnecessary with 2D EAs
if sllen == 0:
return []
bp = BlockPlacement(slice(0, sllen))
return [blk.getitem_block_columns(slobj, new_mgr_locs=bp)]
elif not allow_fill or self.ndim == 1:
if allow_fill and fill_value is None:
fill_value = blk.fill_value
if not allow_fill and only_slice:
# GH#33597 slice instead of take, so we get
# views instead of copies
blocks = [
blk.getitem_block_columns(
slice(ml, ml + 1), new_mgr_locs=BlockPlacement(i)
)
for i, ml in enumerate(slobj)
]
return blocks
else:
bp = BlockPlacement(slice(0, sllen))
return [
blk.take_nd(
slobj,
axis=0,
new_mgr_locs=bp,
fill_value=fill_value,
)
]
if sl_type == "slice":
blknos = self.blknos[slobj]
blklocs = self.blklocs[slobj]
else:
blknos = algos.take_nd(
self.blknos, slobj, fill_value=-1, allow_fill=allow_fill
)
blklocs = algos.take_nd(
self.blklocs, slobj, fill_value=-1, allow_fill=allow_fill
)
# When filling blknos, make sure blknos is updated before appending to
# blocks list, that way new blkno is exactly len(blocks).
blocks = []
group = not only_slice
for blkno, mgr_locs in libinternals.get_blkno_placements(blknos, group=group):
if blkno == -1:
# If we've got here, fill_value was not lib.no_default
blocks.append(
self._make_na_block(
placement=mgr_locs,
fill_value=fill_value,
use_na_proxy=use_na_proxy,
)
)
else:
blk = self.blocks[blkno]
# Otherwise, slicing along items axis is necessary.
if not blk._can_consolidate and not blk._validate_ndim:
# i.e. we dont go through here for DatetimeTZBlock
# A non-consolidatable block, it's easy, because there's
# only one item and each mgr loc is a copy of that single
# item.
deep = not (only_slice or using_copy_on_write())
for mgr_loc in mgr_locs:
newblk = blk.copy(deep=deep)
newblk.mgr_locs = BlockPlacement(slice(mgr_loc, mgr_loc + 1))
blocks.append(newblk)
else:
# GH#32779 to avoid the performance penalty of copying,
# we may try to only slice
taker = blklocs[mgr_locs.indexer]
max_len = max(len(mgr_locs), taker.max() + 1)
if only_slice or using_copy_on_write():
taker = lib.maybe_indices_to_slice(taker, max_len)
if isinstance(taker, slice):
nb = blk.getitem_block_columns(taker, new_mgr_locs=mgr_locs)
blocks.append(nb)
elif only_slice:
# GH#33597 slice instead of take, so we get
# views instead of copies
for i, ml in zip(taker, mgr_locs):
slc = slice(i, i + 1)
bp = BlockPlacement(ml)
nb = blk.getitem_block_columns(slc, new_mgr_locs=bp)
# We have np.shares_memory(nb.values, blk.values)
blocks.append(nb)
else:
nb = blk.take_nd(taker, axis=0, new_mgr_locs=mgr_locs)
blocks.append(nb)
return blocks
def _make_na_block(
self, placement: BlockPlacement, fill_value=None, use_na_proxy: bool = False
) -> Block:
# Note: we only get here with self.ndim == 2
if use_na_proxy:
assert fill_value is None
shape = (len(placement), self.shape[1])
vals = np.empty(shape, dtype=np.void)
nb = NumpyBlock(vals, placement, ndim=2)
return nb
if fill_value is None:
fill_value = np.nan
block_shape = list(self.shape)
block_shape[0] = len(placement)
dtype, fill_value = infer_dtype_from_scalar(fill_value)
# error: Argument "dtype" to "empty" has incompatible type "Union[dtype,
# ExtensionDtype]"; expected "Union[dtype, None, type, _SupportsDtype, str,
# Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], _DtypeDict,
# Tuple[Any, Any]]"
block_values = np.empty(block_shape, dtype=dtype) # type: ignore[arg-type]
block_values.fill(fill_value)
return new_block_2d(block_values, placement=placement)
def take(
self: T,
indexer,
axis: AxisInt = 1,
verify: bool = True,
convert_indices: bool = True,
) -> T:
"""
Take items along any axis.
indexer : np.ndarray or slice
axis : int, default 1
verify : bool, default True
Check that all entries are between 0 and len(self) - 1, inclusive.
Pass verify=False if this check has been done by the caller.
convert_indices : bool, default True
Whether to attempt to convert indices to positive values.
Returns
-------
BlockManager
"""
# We have 6 tests that get here with a slice
indexer = (
np.arange(indexer.start, indexer.stop, indexer.step, dtype=np.intp)
if isinstance(indexer, slice)
else np.asanyarray(indexer, dtype=np.intp)
)
n = self.shape[axis]
if convert_indices:
indexer = maybe_convert_indices(indexer, n, verify=verify)
new_labels = self.axes[axis].take(indexer)
return self.reindex_indexer(
new_axis=new_labels,
indexer=indexer,
axis=axis,
allow_dups=True,
copy=None,
)
class BlockManager(libinternals.BlockManager, BaseBlockManager):
"""
BaseBlockManager that holds 2D blocks.
"""
ndim = 2
# ----------------------------------------------------------------
# Constructors
def __init__(
self,
blocks: Sequence[Block],
axes: Sequence[Index],
verify_integrity: bool = True,
) -> None:
if verify_integrity:
# Assertion disabled for performance
# assert all(isinstance(x, Index) for x in axes)
for block in blocks:
if self.ndim != block.ndim:
raise AssertionError(
f"Number of Block dimensions ({block.ndim}) must equal "
f"number of axes ({self.ndim})"
)
# As of 2.0, the caller is responsible for ensuring that
# DatetimeTZBlock with block.ndim == 2 has block.values.ndim ==2;
# previously there was a special check for fastparquet compat.
self._verify_integrity()
def _verify_integrity(self) -> None:
mgr_shape = self.shape
tot_items = sum(len(x.mgr_locs) for x in self.blocks)
for block in self.blocks:
if block.shape[1:] != mgr_shape[1:]:
raise_construction_error(tot_items, block.shape[1:], self.axes)
if len(self.items) != tot_items:
raise AssertionError(
"Number of manager items must equal union of "
f"block items\n# manager items: {len(self.items)}, # "
f"tot_items: {tot_items}"
)
@classmethod
def from_blocks(cls, blocks: list[Block], axes: list[Index]) -> BlockManager:
"""
Constructor for BlockManager and SingleBlockManager with same signature.
"""
return cls(blocks, axes, verify_integrity=False)
# ----------------------------------------------------------------
# Indexing
def fast_xs(self, loc: int) -> SingleBlockManager:
"""
Return the array corresponding to `frame.iloc[loc]`.
Parameters
----------
loc : int
Returns
-------
np.ndarray or ExtensionArray
"""
if len(self.blocks) == 1:
# TODO: this could be wrong if blk.mgr_locs is not slice(None)-like;
# is this ruled out in the general case?
result = self.blocks[0].iget((slice(None), loc))
# in the case of a single block, the new block is a view
block = new_block(
result,
placement=slice(0, len(result)),
ndim=1,
refs=self.blocks[0].refs,
)
return SingleBlockManager(block, self.axes[0])
dtype = interleaved_dtype([blk.dtype for blk in self.blocks])
n = len(self)
# GH#46406
immutable_ea = isinstance(dtype, SparseDtype)
if isinstance(dtype, ExtensionDtype) and not immutable_ea:
cls = dtype.construct_array_type()
result = cls._empty((n,), dtype=dtype)
else:
# error: Argument "dtype" to "empty" has incompatible type
# "Union[Type[object], dtype[Any], ExtensionDtype, None]"; expected
# "None"
result = np.empty(
n, dtype=object if immutable_ea else dtype # type: ignore[arg-type]
)
result = ensure_wrapped_if_datetimelike(result)
for blk in self.blocks:
# Such assignment may incorrectly coerce NaT to None
# result[blk.mgr_locs] = blk._slice((slice(None), loc))
for i, rl in enumerate(blk.mgr_locs):
result[rl] = blk.iget((i, loc))
if immutable_ea:
dtype = cast(ExtensionDtype, dtype)
result = dtype.construct_array_type()._from_sequence(result, dtype=dtype)
block = new_block(result, placement=slice(0, len(result)), ndim=1)
return SingleBlockManager(block, self.axes[0])
def iget(self, i: int, track_ref: bool = True) -> SingleBlockManager:
"""
Return the data as a SingleBlockManager.
"""
block = self.blocks[self.blknos[i]]
values = block.iget(self.blklocs[i])
# shortcut for select a single-dim from a 2-dim BM
bp = BlockPlacement(slice(0, len(values)))
nb = type(block)(
values, placement=bp, ndim=1, refs=block.refs if track_ref else None
)
return SingleBlockManager(nb, self.axes[1])
def iget_values(self, i: int) -> ArrayLike:
"""
Return the data for column i as the values (ndarray or ExtensionArray).
Warning! The returned array is a view but doesn't handle Copy-on-Write,
so this should be used with caution.
"""
# TODO(CoW) making the arrays read-only might make this safer to use?
block = self.blocks[self.blknos[i]]
values = block.iget(self.blklocs[i])
return values
@property
def column_arrays(self) -> list[np.ndarray]:
"""
Used in the JSON C code to access column arrays.
This optimizes compared to using `iget_values` by converting each
Warning! This doesn't handle Copy-on-Write, so should be used with
caution (current use case of consuming this in the JSON code is fine).
"""
# This is an optimized equivalent to
# result = [self.iget_values(i) for i in range(len(self.items))]
result: list[np.ndarray | None] = [None] * len(self.items)
for blk in self.blocks:
mgr_locs = blk._mgr_locs
values = blk.values_for_json()
if values.ndim == 1:
# TODO(EA2D): special casing not needed with 2D EAs
result[mgr_locs[0]] = values
else:
for i, loc in enumerate(mgr_locs):
result[loc] = values[i]
# error: Incompatible return value type (got "List[None]",
# expected "List[ndarray[Any, Any]]")
return result # type: ignore[return-value]
def iset(
self, loc: int | slice | np.ndarray, value: ArrayLike, inplace: bool = False
):
"""
Set new item in-place. Does not consolidate. Adds new Block if not
contained in the current set of items
"""
# FIXME: refactor, clearly separate broadcasting & zip-like assignment
# can prob also fix the various if tests for sparse/categorical
if self._blklocs is None and self.ndim > 1:
self._rebuild_blknos_and_blklocs()
# Note: we exclude DTA/TDA here
value_is_extension_type = is_1d_only_ea_dtype(value.dtype)
if not value_is_extension_type:
if value.ndim == 2:
value = value.T
else:
value = ensure_block_shape(value, ndim=2)
if value.shape[1:] != self.shape[1:]:
raise AssertionError(
"Shape of new values must be compatible with manager shape"
)
if lib.is_integer(loc):
# We have 6 tests where loc is _not_ an int.
# In this case, get_blkno_placements will yield only one tuple,
# containing (self._blknos[loc], BlockPlacement(slice(0, 1, 1)))
# Check if we can use _iset_single fastpath
loc = cast(int, loc)
blkno = self.blknos[loc]
blk = self.blocks[blkno]
if len(blk._mgr_locs) == 1: # TODO: fastest way to check this?
return self._iset_single(
loc,
value,
inplace=inplace,
blkno=blkno,
blk=blk,
)
# error: Incompatible types in assignment (expression has type
# "List[Union[int, slice, ndarray]]", variable has type "Union[int,
# slice, ndarray]")
loc = [loc] # type: ignore[assignment]
# categorical/sparse/datetimetz
if value_is_extension_type:
def value_getitem(placement):
return value
else:
def value_getitem(placement):
return value[placement.indexer]
# Accessing public blknos ensures the public versions are initialized
blknos = self.blknos[loc]
blklocs = self.blklocs[loc].copy()
unfit_mgr_locs = []
unfit_val_locs = []
removed_blknos = []
for blkno_l, val_locs in libinternals.get_blkno_placements(blknos, group=True):
blk = self.blocks[blkno_l]
blk_locs = blklocs[val_locs.indexer]
if inplace and blk.should_store(value):
# Updating inplace -> check if we need to do Copy-on-Write
if using_copy_on_write() and not self._has_no_reference_block(blkno_l):
self._iset_split_block(blkno_l, blk_locs, value_getitem(val_locs))
else:
blk.set_inplace(blk_locs, value_getitem(val_locs))
continue
else:
unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs])
unfit_val_locs.append(val_locs)
# If all block items are unfit, schedule the block for removal.
if len(val_locs) == len(blk.mgr_locs):
removed_blknos.append(blkno_l)
continue
else:
# Defer setting the new values to enable consolidation
self._iset_split_block(blkno_l, blk_locs)
if len(removed_blknos):
# Remove blocks & update blknos accordingly
is_deleted = np.zeros(self.nblocks, dtype=np.bool_)
is_deleted[removed_blknos] = True
new_blknos = np.empty(self.nblocks, dtype=np.intp)
new_blknos.fill(-1)
new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos))
self._blknos = new_blknos[self._blknos]
self.blocks = tuple(
blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)
)
if unfit_val_locs:
unfit_idxr = np.concatenate(unfit_mgr_locs)
unfit_count = len(unfit_idxr)
new_blocks: list[Block] = []
# TODO(CoW) is this always correct to assume that the new_blocks
# are not referencing anything else?
if value_is_extension_type:
# This code (ab-)uses the fact that EA blocks contain only
# one item.
# TODO(EA2D): special casing unnecessary with 2D EAs
new_blocks.extend(
new_block_2d(
values=value,
placement=BlockPlacement(slice(mgr_loc, mgr_loc + 1)),
)
for mgr_loc in unfit_idxr
)
self._blknos[unfit_idxr] = np.arange(unfit_count) + len(self.blocks)
self._blklocs[unfit_idxr] = 0
else:
# unfit_val_locs contains BlockPlacement objects
unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:])
new_blocks.append(
new_block_2d(
values=value_getitem(unfit_val_items),
placement=BlockPlacement(unfit_idxr),
)
)
self._blknos[unfit_idxr] = len(self.blocks)
self._blklocs[unfit_idxr] = np.arange(unfit_count)
self.blocks += tuple(new_blocks)
# Newly created block's dtype may already be present.
self._known_consolidated = False
def _iset_split_block(
self,
blkno_l: int,
blk_locs: np.ndarray | list[int],
value: ArrayLike | None = None,
) -> None:
"""Removes columns from a block by splitting the block.
Avoids copying the whole block through slicing and updates the manager
after determinint the new block structure. Optionally adds a new block,
otherwise has to be done by the caller.
Parameters
----------
blkno_l: The block number to operate on, relevant for updating the manager
blk_locs: The locations of our block that should be deleted.
value: The value to set as a replacement.
"""
blk = self.blocks[blkno_l]
if self._blklocs is None:
self._rebuild_blknos_and_blklocs()
nbs_tup = tuple(blk.delete(blk_locs))
if value is not None:
locs = blk.mgr_locs.as_array[blk_locs]
first_nb = new_block_2d(value, BlockPlacement(locs))
else:
first_nb = nbs_tup[0]
nbs_tup = tuple(nbs_tup[1:])
nr_blocks = len(self.blocks)
blocks_tup = (
self.blocks[:blkno_l] + (first_nb,) + self.blocks[blkno_l + 1 :] + nbs_tup
)
self.blocks = blocks_tup
if not nbs_tup and value is not None:
# No need to update anything if split did not happen
return
self._blklocs[first_nb.mgr_locs.indexer] = np.arange(len(first_nb))
for i, nb in enumerate(nbs_tup):
self._blklocs[nb.mgr_locs.indexer] = np.arange(len(nb))
self._blknos[nb.mgr_locs.indexer] = i + nr_blocks
def _iset_single(
self, loc: int, value: ArrayLike, inplace: bool, blkno: int, blk: Block
) -> None:
"""
Fastpath for iset when we are only setting a single position and
the Block currently in that position is itself single-column.
In this case we can swap out the entire Block and blklocs and blknos
are unaffected.
"""
# Caller is responsible for verifying value.shape
if inplace and blk.should_store(value):
copy = False
if using_copy_on_write() and not self._has_no_reference_block(blkno):
# perform Copy-on-Write and clear the reference
copy = True
iloc = self.blklocs[loc]
blk.set_inplace(slice(iloc, iloc + 1), value, copy=copy)
return
nb = new_block_2d(value, placement=blk._mgr_locs)
old_blocks = self.blocks
new_blocks = old_blocks[:blkno] + (nb,) + old_blocks[blkno + 1 :]
self.blocks = new_blocks
return
def column_setitem(
self, loc: int, idx: int | slice | np.ndarray, value, inplace_only: bool = False
) -> None:
"""
Set values ("setitem") into a single column (not setting the full column).
This is a method on the BlockManager level, to avoid creating an
intermediate Series at the DataFrame level (`s = df[loc]; s[idx] = value`)
"""
if using_copy_on_write() and not self._has_no_reference(loc):
blkno = self.blknos[loc]
# Split blocks to only copy the column we want to modify
blk_loc = self.blklocs[loc]
# Copy our values
values = self.blocks[blkno].values
if values.ndim == 1:
values = values.copy()
else:
# Use [blk_loc] as indexer to keep ndim=2, this already results in a
# copy
values = values[[blk_loc]]
self._iset_split_block(blkno, [blk_loc], values)
# this manager is only created temporarily to mutate the values in place
# so don't track references, otherwise the `setitem` would perform CoW again
col_mgr = self.iget(loc, track_ref=False)
if inplace_only:
col_mgr.setitem_inplace(idx, value)
else:
new_mgr = col_mgr.setitem((idx,), value)
self.iset(loc, new_mgr._block.values, inplace=True)
def insert(self, loc: int, item: Hashable, value: ArrayLike) -> None:
"""
Insert item at selected position.
Parameters
----------
loc : int
item : hashable
value : np.ndarray or ExtensionArray
"""
# insert to the axis; this could possibly raise a TypeError
new_axis = self.items.insert(loc, item)
if value.ndim == 2:
value = value.T
if len(value) > 1:
raise ValueError(
f"Expected a 1D array, got an array with shape {value.T.shape}"
)
else:
value = ensure_block_shape(value, ndim=self.ndim)
bp = BlockPlacement(slice(loc, loc + 1))
# TODO(CoW) do we always "own" the passed `value`?
block = new_block_2d(values=value, placement=bp)
if not len(self.blocks):
# Fastpath
self._blklocs = np.array([0], dtype=np.intp)
self._blknos = np.array([0], dtype=np.intp)
else:
self._insert_update_mgr_locs(loc)
self._insert_update_blklocs_and_blknos(loc)
self.axes[0] = new_axis
self.blocks += (block,)
self._known_consolidated = False
if sum(not block.is_extension for block in self.blocks) > 100:
warnings.warn(
"DataFrame is highly fragmented. This is usually the result "
"of calling `frame.insert` many times, which has poor performance. "
"Consider joining all columns at once using pd.concat(axis=1) "
"instead. To get a de-fragmented frame, use `newframe = frame.copy()`",
PerformanceWarning,
stacklevel=find_stack_level(),
)
def _insert_update_mgr_locs(self, loc) -> None:
"""
When inserting a new Block at location 'loc', we increment
all of the mgr_locs of blocks above that by one.
"""
for blkno, count in _fast_count_smallints(self.blknos[loc:]):
# .620 this way, .326 of which is in increment_above
blk = self.blocks[blkno]
blk._mgr_locs = blk._mgr_locs.increment_above(loc)
def _insert_update_blklocs_and_blknos(self, loc) -> None:
"""
When inserting a new Block at location 'loc', we update our
_blklocs and _blknos.
"""
# Accessing public blklocs ensures the public versions are initialized
if loc == self.blklocs.shape[0]:
# np.append is a lot faster, let's use it if we can.
self._blklocs = np.append(self._blklocs, 0)
self._blknos = np.append(self._blknos, len(self.blocks))
elif loc == 0:
# np.append is a lot faster, let's use it if we can.
self._blklocs = np.append(self._blklocs[::-1], 0)[::-1]
self._blknos = np.append(self._blknos[::-1], len(self.blocks))[::-1]
else:
new_blklocs, new_blknos = libinternals.update_blklocs_and_blknos(
self.blklocs, self.blknos, loc, len(self.blocks)
)
self._blklocs = new_blklocs
self._blknos = new_blknos
def idelete(self, indexer) -> BlockManager:
"""
Delete selected locations, returning a new BlockManager.
"""
is_deleted = np.zeros(self.shape[0], dtype=np.bool_)
is_deleted[indexer] = True
taker = (~is_deleted).nonzero()[0]
nbs = self._slice_take_blocks_ax0(taker, only_slice=True)
new_columns = self.items[~is_deleted]
axes = [new_columns, self.axes[1]]
return type(self)(tuple(nbs), axes, verify_integrity=False)
# ----------------------------------------------------------------
# Block-wise Operation
def grouped_reduce(self: T, func: Callable) -> T:
"""
Apply grouped reduction function blockwise, returning a new BlockManager.
Parameters
----------
func : grouped reduction function
Returns
-------
BlockManager
"""
result_blocks: list[Block] = []
for blk in self.blocks:
if blk.is_object:
# split on object-dtype blocks bc some columns may raise
# while others do not.
for sb in blk._split():
applied = sb.apply(func)
result_blocks = extend_blocks(applied, result_blocks)
else:
applied = blk.apply(func)
result_blocks = extend_blocks(applied, result_blocks)
if len(result_blocks) == 0:
nrows = 0
else:
nrows = result_blocks[0].values.shape[-1]
index = Index(range(nrows))
return type(self).from_blocks(result_blocks, [self.axes[0], index])
def reduce(self: T, func: Callable) -> T:
"""
Apply reduction function blockwise, returning a single-row BlockManager.
Parameters
----------
func : reduction function
Returns
-------
BlockManager
"""
# If 2D, we assume that we're operating column-wise
assert self.ndim == 2
res_blocks: list[Block] = []
for blk in self.blocks:
nbs = blk.reduce(func)
res_blocks.extend(nbs)
index = Index([None]) # placeholder
new_mgr = type(self).from_blocks(res_blocks, [self.items, index])
return new_mgr
def operate_blockwise(self, other: BlockManager, array_op) -> BlockManager:
"""
Apply array_op blockwise with another (aligned) BlockManager.
"""
return operate_blockwise(self, other, array_op)
def _equal_values(self: BlockManager, other: BlockManager) -> bool:
"""
Used in .equals defined in base class. Only check the column values
assuming shape and indexes have already been checked.
"""
return blockwise_all(self, other, array_equals)
def quantile(
self: T,
*,
qs: Index, # with dtype float 64
axis: AxisInt = 0,
interpolation: QuantileInterpolation = "linear",
) -> T:
"""
Iterate over blocks applying quantile reduction.
This routine is intended for reduction type operations and
will do inference on the generated blocks.
Parameters
----------
axis: reduction axis, default 0
consolidate: bool, default True. Join together blocks having same
dtype
interpolation : type of interpolation, default 'linear'
qs : list of the quantiles to be computed
Returns
-------
BlockManager
"""
# Series dispatches to DataFrame for quantile, which allows us to
# simplify some of the code here and in the blocks
assert self.ndim >= 2
assert is_list_like(qs) # caller is responsible for this
assert axis == 1 # only ever called this way
new_axes = list(self.axes)
new_axes[1] = Index(qs, dtype=np.float64)
blocks = [
blk.quantile(axis=axis, qs=qs, interpolation=interpolation)
for blk in self.blocks
]
return type(self)(blocks, new_axes)
# ----------------------------------------------------------------
def unstack(self, unstacker, fill_value) -> BlockManager:
"""
Return a BlockManager with all blocks unstacked.
Parameters
----------
unstacker : reshape._Unstacker
fill_value : Any
fill_value for newly introduced missing values.
Returns
-------
unstacked : BlockManager
"""
new_columns = unstacker.get_new_columns(self.items)
new_index = unstacker.new_index
allow_fill = not unstacker.mask_all
if allow_fill:
# calculating the full mask once and passing it to Block._unstack is
# faster than letting calculating it in each repeated call
new_mask2D = (~unstacker.mask).reshape(*unstacker.full_shape)
needs_masking = new_mask2D.any(axis=0)
else:
needs_masking = np.zeros(unstacker.full_shape[1], dtype=bool)
new_blocks: list[Block] = []
columns_mask: list[np.ndarray] = []
if len(self.items) == 0:
factor = 1
else:
fac = len(new_columns) / len(self.items)
assert fac == int(fac)
factor = int(fac)
for blk in self.blocks:
mgr_locs = blk.mgr_locs
new_placement = mgr_locs.tile_for_unstack(factor)
blocks, mask = blk._unstack(
unstacker,
fill_value,
new_placement=new_placement,
needs_masking=needs_masking,
)
new_blocks.extend(blocks)
columns_mask.extend(mask)
# Block._unstack should ensure this holds,
assert mask.sum() == sum(len(nb._mgr_locs) for nb in blocks)
# In turn this ensures that in the BlockManager call below
# we have len(new_columns) == sum(x.shape[0] for x in new_blocks)
# which suffices to allow us to pass verify_inegrity=False
new_columns = new_columns[columns_mask]
bm = BlockManager(new_blocks, [new_columns, new_index], verify_integrity=False)
return bm
def to_dict(self, copy: bool = True):
"""
Return a dict of str(dtype) -> BlockManager
Parameters
----------
copy : bool, default True
Returns
-------
values : a dict of dtype -> BlockManager
"""
bd: dict[str, list[Block]] = {}
for b in self.blocks:
bd.setdefault(str(b.dtype), []).append(b)
# TODO(EA2D): the combine will be unnecessary with 2D EAs
return {dtype: self._combine(blocks, copy=copy) for dtype, blocks in bd.items()}
def as_array(
self,
dtype: np.dtype | None = None,
copy: bool = False,
na_value: object = lib.no_default,
) -> np.ndarray:
"""
Convert the blockmanager data into an numpy array.
Parameters
----------
dtype : np.dtype or None, default None
Data type of the return array.
copy : bool, default False
If True then guarantee that a copy is returned. A value of
False does not guarantee that the underlying data is not
copied.
na_value : object, default lib.no_default
Value to be used as the missing value sentinel.
Returns
-------
arr : ndarray
"""
# TODO(CoW) handle case where resulting array is a view
if len(self.blocks) == 0:
arr = np.empty(self.shape, dtype=float)
return arr.transpose()
# We want to copy when na_value is provided to avoid
# mutating the original object
copy = copy or na_value is not lib.no_default
if self.is_single_block:
blk = self.blocks[0]
if blk.is_extension:
# Avoid implicit conversion of extension blocks to object
# error: Item "ndarray" of "Union[ndarray, ExtensionArray]" has no
# attribute "to_numpy"
arr = blk.values.to_numpy( # type: ignore[union-attr]
dtype=dtype,
na_value=na_value,
).reshape(blk.shape)
else:
arr = np.asarray(blk.get_values())
if dtype:
arr = arr.astype(dtype, copy=False)
if copy:
arr = arr.copy()
elif using_copy_on_write():
arr = arr.view()
arr.flags.writeable = False
else:
arr = self._interleave(dtype=dtype, na_value=na_value)
# The underlying data was copied within _interleave, so no need
# to further copy if copy=True or setting na_value
if na_value is not lib.no_default:
arr[isna(arr)] = na_value
return arr.transpose()
def _interleave(
self,
dtype: np.dtype | None = None,
na_value: object = lib.no_default,
) -> np.ndarray:
"""
Return ndarray from blocks with specified item order
Items must be contained in the blocks
"""
if not dtype:
# Incompatible types in assignment (expression has type
# "Optional[Union[dtype[Any], ExtensionDtype]]", variable has
# type "Optional[dtype[Any]]")
dtype = interleaved_dtype( # type: ignore[assignment]
[blk.dtype for blk in self.blocks]
)
# TODO: https://github.com/pandas-dev/pandas/issues/22791
# Give EAs some input on what happens here. Sparse needs this.
if isinstance(dtype, SparseDtype):
dtype = dtype.subtype
dtype = cast(np.dtype, dtype)
elif isinstance(dtype, ExtensionDtype):
dtype = np.dtype("object")
elif is_dtype_equal(dtype, str):
dtype = np.dtype("object")
result = np.empty(self.shape, dtype=dtype)
itemmask = np.zeros(self.shape[0])
if dtype == np.dtype("object") and na_value is lib.no_default:
# much more performant than using to_numpy below
for blk in self.blocks:
rl = blk.mgr_locs
arr = blk.get_values(dtype)
result[rl.indexer] = arr
itemmask[rl.indexer] = 1
return result
for blk in self.blocks:
rl = blk.mgr_locs
if blk.is_extension:
# Avoid implicit conversion of extension blocks to object
# error: Item "ndarray" of "Union[ndarray, ExtensionArray]" has no
# attribute "to_numpy"
arr = blk.values.to_numpy( # type: ignore[union-attr]
dtype=dtype,
na_value=na_value,
)
else:
arr = blk.get_values(dtype)
result[rl.indexer] = arr
itemmask[rl.indexer] = 1
if not itemmask.all():
raise AssertionError("Some items were not contained in blocks")
return result
# ----------------------------------------------------------------
# Consolidation
def is_consolidated(self) -> bool:
"""
Return True if more than one block with the same dtype
"""
if not self._known_consolidated:
self._consolidate_check()
return self._is_consolidated
def _consolidate_check(self) -> None:
if len(self.blocks) == 1:
# fastpath
self._is_consolidated = True
self._known_consolidated = True
return
dtypes = [blk.dtype for blk in self.blocks if blk._can_consolidate]
self._is_consolidated = len(dtypes) == len(set(dtypes))
self._known_consolidated = True
def _consolidate_inplace(self) -> None:
# In general, _consolidate_inplace should only be called via
# DataFrame._consolidate_inplace, otherwise we will fail to invalidate
# the DataFrame's _item_cache. The exception is for newly-created
# BlockManager objects not yet attached to a DataFrame.
if not self.is_consolidated():
self.blocks = _consolidate(self.blocks)
self._is_consolidated = True
self._known_consolidated = True
self._rebuild_blknos_and_blklocs()
class SingleBlockManager(BaseBlockManager, SingleDataManager):
"""manage a single block with"""
@property
def ndim(self) -> Literal[1]:
return 1
_is_consolidated = True
_known_consolidated = True
__slots__ = ()
is_single_block = True
def __init__(
self,
block: Block,
axis: Index,
verify_integrity: bool = False,
) -> None:
# Assertions disabled for performance
# assert isinstance(block, Block), type(block)
# assert isinstance(axis, Index), type(axis)
self.axes = [axis]
self.blocks = (block,)
@classmethod
def from_blocks(
cls,
blocks: list[Block],
axes: list[Index],
) -> SingleBlockManager:
"""
Constructor for BlockManager and SingleBlockManager with same signature.
"""
assert len(blocks) == 1
assert len(axes) == 1
return cls(blocks[0], axes[0], verify_integrity=False)
@classmethod
def from_array(
cls, array: ArrayLike, index: Index, refs: BlockValuesRefs | None = None
) -> SingleBlockManager:
"""
Constructor for if we have an array that is not yet a Block.
"""
block = new_block(array, placement=slice(0, len(index)), ndim=1, refs=refs)
return cls(block, index)
def to_2d_mgr(self, columns: Index) -> BlockManager:
"""
Manager analogue of Series.to_frame
"""
blk = self.blocks[0]
arr = ensure_block_shape(blk.values, ndim=2)
bp = BlockPlacement(0)
new_blk = type(blk)(arr, placement=bp, ndim=2, refs=blk.refs)
axes = [columns, self.axes[0]]
return BlockManager([new_blk], axes=axes, verify_integrity=False)
def _has_no_reference(self, i: int = 0) -> bool:
"""
Check for column `i` if it has references.
(whether it references another array or is itself being referenced)
Returns True if the column has no references.
"""
return not self.blocks[0].refs.has_reference()
def __getstate__(self):
block_values = [b.values for b in self.blocks]
block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks]
axes_array = list(self.axes)
extra_state = {
"0.14.1": {
"axes": axes_array,
"blocks": [
{"values": b.values, "mgr_locs": b.mgr_locs.indexer}
for b in self.blocks
],
}
}
# First three elements of the state are to maintain forward
# compatibility with 0.13.1.
return axes_array, block_values, block_items, extra_state
def __setstate__(self, state):
def unpickle_block(values, mgr_locs, ndim: int) -> Block:
# TODO(EA2D): ndim would be unnecessary with 2D EAs
# older pickles may store e.g. DatetimeIndex instead of DatetimeArray
values = extract_array(values, extract_numpy=True)
return new_block(values, placement=mgr_locs, ndim=ndim)
if isinstance(state, tuple) and len(state) >= 4 and "0.14.1" in state[3]:
state = state[3]["0.14.1"]
self.axes = [ensure_index(ax) for ax in state["axes"]]
ndim = len(self.axes)
self.blocks = tuple(
unpickle_block(b["values"], b["mgr_locs"], ndim=ndim)
for b in state["blocks"]
)
else:
raise NotImplementedError("pre-0.14.1 pickles are no longer supported")
self._post_setstate()
def _post_setstate(self) -> None:
pass
@cache_readonly
def _block(self) -> Block:
return self.blocks[0]
@property
def _blknos(self):
"""compat with BlockManager"""
return None
@property
def _blklocs(self):
"""compat with BlockManager"""
return None
def getitem_mgr(self, indexer: slice | np.ndarray) -> SingleBlockManager:
# similar to get_slice, but not restricted to slice indexer
blk = self._block
if (
using_copy_on_write()
and isinstance(indexer, np.ndarray)
and len(indexer) > 0
and com.is_bool_indexer(indexer)
and indexer.all()
):
return type(self)(blk.copy(deep=False), self.index)
array = blk._slice(indexer)
if array.ndim > 1:
# This will be caught by Series._get_values
raise ValueError("dimension-expanding indexing not allowed")
bp = BlockPlacement(slice(0, len(array)))
# TODO(CoW) in theory only need to track reference if new_array is a view
block = type(blk)(array, placement=bp, ndim=1, refs=blk.refs)
new_idx = self.index[indexer]
return type(self)(block, new_idx)
def get_slice(self, slobj: slice, axis: AxisInt = 0) -> SingleBlockManager:
# Assertion disabled for performance
# assert isinstance(slobj, slice), type(slobj)
if axis >= self.ndim:
raise IndexError("Requested axis not found in manager")
blk = self._block
array = blk._slice(slobj)
bp = BlockPlacement(slice(0, len(array)))
# TODO this method is only used in groupby SeriesSplitter at the moment,
# so passing refs is not yet covered by the tests
block = type(blk)(array, placement=bp, ndim=1, refs=blk.refs)
new_index = self.index._getitem_slice(slobj)
return type(self)(block, new_index)
@property
def index(self) -> Index:
return self.axes[0]
@property
def dtype(self) -> DtypeObj:
return self._block.dtype
def get_dtypes(self) -> np.ndarray:
return np.array([self._block.dtype])
def external_values(self):
"""The array that Series.values returns"""
return self._block.external_values()
def internal_values(self):
"""The array that Series._values returns"""
return self._block.values
def array_values(self):
"""The array that Series.array returns"""
return self._block.array_values
def get_numeric_data(self, copy: bool = False):
if self._block.is_numeric:
return self.copy(deep=copy)
return self.make_empty()
@property
def _can_hold_na(self) -> bool:
return self._block._can_hold_na
def setitem_inplace(self, indexer, value) -> None:
"""
Set values with indexer.
For Single[Block/Array]Manager, this backs s[indexer] = value
This is an inplace version of `setitem()`, mutating the manager/values
in place, not returning a new Manager (and Block), and thus never changing
the dtype.
"""
if using_copy_on_write() and not self._has_no_reference(0):
self.blocks = (self._block.copy(),)
self._cache.clear()
super().setitem_inplace(indexer, value)
def idelete(self, indexer) -> SingleBlockManager:
"""
Delete single location from SingleBlockManager.
Ensures that self.blocks doesn't become empty.
"""
nb = self._block.delete(indexer)[0]
self.blocks = (nb,)
self.axes[0] = self.axes[0].delete(indexer)
self._cache.clear()
return self
def fast_xs(self, loc):
"""
fast path for getting a cross-section
return a view of the data
"""
raise NotImplementedError("Use series._values[loc] instead")
def set_values(self, values: ArrayLike) -> None:
"""
Set the values of the single block in place.
Use at your own risk! This does not check if the passed values are
valid for the current Block/SingleBlockManager (length, dtype, etc).
"""
# TODO(CoW) do we need to handle copy on write here? Currently this is
# only used for FrameColumnApply.series_generator (what if apply is
# mutating inplace?)
self.blocks[0].values = values
self.blocks[0]._mgr_locs = BlockPlacement(slice(len(values)))
def _equal_values(self: T, other: T) -> bool:
"""
Used in .equals defined in base class. Only check the column values
assuming shape and indexes have already been checked.
"""
# For SingleBlockManager (i.e.Series)
if other.ndim != 1:
return False
left = self.blocks[0].values
right = other.blocks[0].values
return array_equals(left, right)
# --------------------------------------------------------------------
# Constructor Helpers
def create_block_manager_from_blocks(
blocks: list[Block],
axes: list[Index],
consolidate: bool = True,
verify_integrity: bool = True,
) -> BlockManager:
# If verify_integrity=False, then caller is responsible for checking
# all(x.shape[-1] == len(axes[1]) for x in blocks)
# sum(x.shape[0] for x in blocks) == len(axes[0])
# set(x for blk in blocks for x in blk.mgr_locs) == set(range(len(axes[0])))
# all(blk.ndim == 2 for blk in blocks)
# This allows us to safely pass verify_integrity=False
try:
mgr = BlockManager(blocks, axes, verify_integrity=verify_integrity)
except ValueError as err:
arrays = [blk.values for blk in blocks]
tot_items = sum(arr.shape[0] for arr in arrays)
raise_construction_error(tot_items, arrays[0].shape[1:], axes, err)
if consolidate:
mgr._consolidate_inplace()
return mgr
def create_block_manager_from_column_arrays(
arrays: list[ArrayLike],
axes: list[Index],
consolidate: bool,
refs: list,
) -> BlockManager:
# Assertions disabled for performance (caller is responsible for verifying)
# assert isinstance(axes, list)
# assert all(isinstance(x, Index) for x in axes)
# assert all(isinstance(x, (np.ndarray, ExtensionArray)) for x in arrays)
# assert all(type(x) is not PandasArray for x in arrays)
# assert all(x.ndim == 1 for x in arrays)
# assert all(len(x) == len(axes[1]) for x in arrays)
# assert len(arrays) == len(axes[0])
# These last three are sufficient to allow us to safely pass
# verify_integrity=False below.
try:
blocks = _form_blocks(arrays, consolidate, refs)
mgr = BlockManager(blocks, axes, verify_integrity=False)
except ValueError as e:
raise_construction_error(len(arrays), arrays[0].shape, axes, e)
if consolidate:
mgr._consolidate_inplace()
return mgr
def raise_construction_error(
tot_items: int,
block_shape: Shape,
axes: list[Index],
e: ValueError | None = None,
):
"""raise a helpful message about our construction"""
passed = tuple(map(int, [tot_items] + list(block_shape)))
# Correcting the user facing error message during dataframe construction
if len(passed) <= 2:
passed = passed[::-1]
implied = tuple(len(ax) for ax in axes)
# Correcting the user facing error message during dataframe construction
if len(implied) <= 2:
implied = implied[::-1]
# We return the exception object instead of raising it so that we
# can raise it in the caller; mypy plays better with that
if passed == implied and e is not None:
raise e
if block_shape[0] == 0:
raise ValueError("Empty data passed with indices specified.")
raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}")
# -----------------------------------------------------------------------
def _grouping_func(tup: tuple[int, ArrayLike]) -> tuple[int, bool, DtypeObj]:
# compat for numpy<1.21, in which comparing a np.dtype with an ExtensionDtype
# raises instead of returning False. Once earlier numpy versions are dropped,
# this can be simplified to `return tup[1].dtype`
dtype = tup[1].dtype
if is_1d_only_ea_dtype(dtype):
# We know these won't be consolidated, so don't need to group these.
# This avoids expensive comparisons of CategoricalDtype objects
sep = id(dtype)
else:
sep = 0
return sep, isinstance(dtype, np.dtype), dtype
def _form_blocks(arrays: list[ArrayLike], consolidate: bool, refs: list) -> list[Block]:
tuples = list(enumerate(arrays))
if not consolidate:
nbs = _tuples_to_blocks_no_consolidate(tuples, refs)
return nbs
# when consolidating, we can ignore refs (either stacking always copies,
# or the EA is already copied in the calling dict_to_mgr)
# TODO(CoW) check if this is also valid for rec_array_to_mgr
# group by dtype
grouper = itertools.groupby(tuples, _grouping_func)
nbs = []
for (_, _, dtype), tup_block in grouper:
block_type = get_block_type(dtype)
if isinstance(dtype, np.dtype):
is_dtlike = dtype.kind in ["m", "M"]
if issubclass(dtype.type, (str, bytes)):
dtype = np.dtype(object)
values, placement = _stack_arrays(list(tup_block), dtype)
if is_dtlike:
values = ensure_wrapped_if_datetimelike(values)
blk = block_type(values, placement=BlockPlacement(placement), ndim=2)
nbs.append(blk)
elif is_1d_only_ea_dtype(dtype):
dtype_blocks = [
block_type(x[1], placement=BlockPlacement(x[0]), ndim=2)
for x in tup_block
]
nbs.extend(dtype_blocks)
else:
dtype_blocks = [
block_type(
ensure_block_shape(x[1], 2), placement=BlockPlacement(x[0]), ndim=2
)
for x in tup_block
]
nbs.extend(dtype_blocks)
return nbs
def _tuples_to_blocks_no_consolidate(tuples, refs) -> list[Block]:
# tuples produced within _form_blocks are of the form (placement, array)
return [
new_block_2d(
ensure_block_shape(arr, ndim=2), placement=BlockPlacement(i), refs=ref
)
for ((i, arr), ref) in zip(tuples, refs)
]
def _stack_arrays(tuples, dtype: np.dtype):
placement, arrays = zip(*tuples)
first = arrays[0]
shape = (len(arrays),) + first.shape
stacked = np.empty(shape, dtype=dtype)
for i, arr in enumerate(arrays):
stacked[i] = arr
return stacked, placement
def _consolidate(blocks: tuple[Block, ...]) -> tuple[Block, ...]:
"""
Merge blocks having same dtype, exclude non-consolidating blocks
"""
# sort by _can_consolidate, dtype
gkey = lambda x: x._consolidate_key
grouper = itertools.groupby(sorted(blocks, key=gkey), gkey)
new_blocks: list[Block] = []
for (_can_consolidate, dtype), group_blocks in grouper:
merged_blocks, _ = _merge_blocks(
list(group_blocks), dtype=dtype, can_consolidate=_can_consolidate
)
new_blocks = extend_blocks(merged_blocks, new_blocks)
return tuple(new_blocks)
def _merge_blocks(
blocks: list[Block], dtype: DtypeObj, can_consolidate: bool
) -> tuple[list[Block], bool]:
if len(blocks) == 1:
return blocks, False
if can_consolidate:
# TODO: optimization potential in case all mgrs contain slices and
# combination of those slices is a slice, too.
new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks])
new_values: ArrayLike
if isinstance(blocks[0].dtype, np.dtype):
# error: List comprehension has incompatible type List[Union[ndarray,
# ExtensionArray]]; expected List[Union[complex, generic,
# Sequence[Union[int, float, complex, str, bytes, generic]],
# Sequence[Sequence[Any]], SupportsArray]]
new_values = np.vstack([b.values for b in blocks]) # type: ignore[misc]
else:
bvals = [blk.values for blk in blocks]
bvals2 = cast(Sequence[NDArrayBackedExtensionArray], bvals)
new_values = bvals2[0]._concat_same_type(bvals2, axis=0)
argsort = np.argsort(new_mgr_locs)
new_values = new_values[argsort]
new_mgr_locs = new_mgr_locs[argsort]
bp = BlockPlacement(new_mgr_locs)
return [new_block_2d(new_values, placement=bp)], True
# can't consolidate --> no merge
return blocks, False
def _fast_count_smallints(arr: npt.NDArray[np.intp]):
"""Faster version of set(arr) for sequences of small numbers."""
counts = np.bincount(arr)
nz = counts.nonzero()[0]
# Note: list(zip(...) outperforms list(np.c_[nz, counts[nz]]) here,
# in one benchmark by a factor of 11
return zip(nz, counts[nz])
def _preprocess_slice_or_indexer(
slice_or_indexer: slice | np.ndarray, length: int, allow_fill: bool
):
if isinstance(slice_or_indexer, slice):
return (
"slice",
slice_or_indexer,
libinternals.slice_len(slice_or_indexer, length),
)
else:
if (
not isinstance(slice_or_indexer, np.ndarray)
or slice_or_indexer.dtype.kind != "i"
):
dtype = getattr(slice_or_indexer, "dtype", None)
raise TypeError(type(slice_or_indexer), dtype)
indexer = ensure_platform_int(slice_or_indexer)
if not allow_fill:
indexer = maybe_convert_indices(indexer, length)
return "fancy", indexer, len(indexer)