243 lines
7.3 KiB
Python
243 lines
7.3 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
MultiIndex,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.tests.apply.common import frame_transform_kernels
|
|
from pandas.tests.frame.common import zip_frames
|
|
|
|
|
|
def unpack_obj(obj, klass, axis):
|
|
"""
|
|
Helper to ensure we have the right type of object for a test parametrized
|
|
over frame_or_series.
|
|
"""
|
|
if klass is not DataFrame:
|
|
obj = obj["A"]
|
|
if axis != 0:
|
|
pytest.skip(f"Test is only for DataFrame with axis={axis}")
|
|
return obj
|
|
|
|
|
|
def test_transform_ufunc(axis, float_frame, frame_or_series):
|
|
# GH 35964
|
|
obj = unpack_obj(float_frame, frame_or_series, axis)
|
|
|
|
with np.errstate(all="ignore"):
|
|
f_sqrt = np.sqrt(obj)
|
|
|
|
# ufunc
|
|
result = obj.transform(np.sqrt, axis=axis)
|
|
expected = f_sqrt
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, names",
|
|
[
|
|
([np.sqrt], ["sqrt"]),
|
|
([np.abs, np.sqrt], ["absolute", "sqrt"]),
|
|
(np.array([np.sqrt]), ["sqrt"]),
|
|
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
|
|
],
|
|
)
|
|
def test_transform_listlike(axis, float_frame, ops, names):
|
|
# GH 35964
|
|
other_axis = 1 if axis in {0, "index"} else 0
|
|
with np.errstate(all="ignore"):
|
|
expected = zip_frames([op(float_frame) for op in ops], axis=other_axis)
|
|
if axis in {0, "index"}:
|
|
expected.columns = MultiIndex.from_product([float_frame.columns, names])
|
|
else:
|
|
expected.index = MultiIndex.from_product([float_frame.index, names])
|
|
result = float_frame.transform(ops, axis=axis)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("ops", [[], np.array([])])
|
|
def test_transform_empty_listlike(float_frame, ops, frame_or_series):
|
|
obj = unpack_obj(float_frame, frame_or_series, 0)
|
|
|
|
with pytest.raises(ValueError, match="No transform functions were provided"):
|
|
obj.transform(ops)
|
|
|
|
|
|
@pytest.mark.parametrize("box", [dict, Series])
|
|
def test_transform_dictlike(axis, float_frame, box):
|
|
# GH 35964
|
|
if axis in (0, "index"):
|
|
e = float_frame.columns[0]
|
|
expected = float_frame[[e]].transform(np.abs)
|
|
else:
|
|
e = float_frame.index[0]
|
|
expected = float_frame.iloc[[0]].transform(np.abs)
|
|
result = float_frame.transform(box({e: np.abs}), axis=axis)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_transform_dictlike_mixed():
|
|
# GH 40018 - mix of lists and non-lists in values of a dictionary
|
|
df = DataFrame({"a": [1, 2], "b": [1, 4], "c": [1, 4]})
|
|
result = df.transform({"b": ["sqrt", "abs"], "c": "sqrt"})
|
|
expected = DataFrame(
|
|
[[1.0, 1, 1.0], [2.0, 4, 2.0]],
|
|
columns=MultiIndex([("b", "c"), ("sqrt", "abs")], [(0, 0, 1), (0, 1, 0)]),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops",
|
|
[
|
|
{},
|
|
{"A": []},
|
|
{"A": [], "B": "cumsum"},
|
|
{"A": "cumsum", "B": []},
|
|
{"A": [], "B": ["cumsum"]},
|
|
{"A": ["cumsum"], "B": []},
|
|
],
|
|
)
|
|
def test_transform_empty_dictlike(float_frame, ops, frame_or_series):
|
|
obj = unpack_obj(float_frame, frame_or_series, 0)
|
|
|
|
with pytest.raises(ValueError, match="No transform functions were provided"):
|
|
obj.transform(ops)
|
|
|
|
|
|
@pytest.mark.parametrize("use_apply", [True, False])
|
|
def test_transform_udf(axis, float_frame, use_apply, frame_or_series):
|
|
# GH 35964
|
|
obj = unpack_obj(float_frame, frame_or_series, axis)
|
|
|
|
# transform uses UDF either via apply or passing the entire DataFrame
|
|
def func(x):
|
|
# transform is using apply iff x is not a DataFrame
|
|
if use_apply == isinstance(x, frame_or_series):
|
|
# Force transform to fallback
|
|
raise ValueError
|
|
return x + 1
|
|
|
|
result = obj.transform(func, axis=axis)
|
|
expected = obj + 1
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
wont_fail = ["ffill", "bfill", "fillna", "pad", "backfill", "shift"]
|
|
frame_kernels_raise = [x for x in frame_transform_kernels if x not in wont_fail]
|
|
|
|
|
|
@pytest.mark.parametrize("op", [*frame_kernels_raise, lambda x: x + 1])
|
|
def test_transform_bad_dtype(op, frame_or_series, request):
|
|
# GH 35964
|
|
if op == "ngroup":
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(raises=ValueError, reason="ngroup not valid for NDFrame")
|
|
)
|
|
|
|
obj = DataFrame({"A": 3 * [object]}) # DataFrame that will fail on most transforms
|
|
obj = tm.get_obj(obj, frame_or_series)
|
|
error = TypeError
|
|
msg = "|".join(
|
|
[
|
|
"not supported between instances of 'type' and 'type'",
|
|
"unsupported operand type",
|
|
]
|
|
)
|
|
|
|
with pytest.raises(error, match=msg):
|
|
obj.transform(op)
|
|
with pytest.raises(error, match=msg):
|
|
obj.transform([op])
|
|
with pytest.raises(error, match=msg):
|
|
obj.transform({"A": op})
|
|
with pytest.raises(error, match=msg):
|
|
obj.transform({"A": [op]})
|
|
|
|
|
|
@pytest.mark.parametrize("op", frame_kernels_raise)
|
|
def test_transform_failure_typeerror(request, op):
|
|
# GH 35964
|
|
|
|
if op == "ngroup":
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(raises=ValueError, reason="ngroup not valid for NDFrame")
|
|
)
|
|
|
|
# Using object makes most transform kernels fail
|
|
df = DataFrame({"A": 3 * [object], "B": [1, 2, 3]})
|
|
error = TypeError
|
|
msg = "|".join(
|
|
[
|
|
"not supported between instances of 'type' and 'type'",
|
|
"unsupported operand type",
|
|
]
|
|
)
|
|
|
|
with pytest.raises(error, match=msg):
|
|
df.transform([op])
|
|
|
|
with pytest.raises(error, match=msg):
|
|
df.transform({"A": op, "B": op})
|
|
|
|
with pytest.raises(error, match=msg):
|
|
df.transform({"A": [op], "B": [op]})
|
|
|
|
with pytest.raises(error, match=msg):
|
|
df.transform({"A": [op, "shift"], "B": [op]})
|
|
|
|
|
|
def test_transform_failure_valueerror():
|
|
# GH 40211
|
|
def op(x):
|
|
if np.sum(np.sum(x)) < 10:
|
|
raise ValueError
|
|
return x
|
|
|
|
df = DataFrame({"A": [1, 2, 3], "B": [400, 500, 600]})
|
|
msg = "Transform function failed"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.transform([op])
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.transform({"A": op, "B": op})
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.transform({"A": [op], "B": [op]})
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.transform({"A": [op, "shift"], "B": [op]})
|
|
|
|
|
|
@pytest.mark.parametrize("use_apply", [True, False])
|
|
def test_transform_passes_args(use_apply, frame_or_series):
|
|
# GH 35964
|
|
# transform uses UDF either via apply or passing the entire DataFrame
|
|
expected_args = [1, 2]
|
|
expected_kwargs = {"c": 3}
|
|
|
|
def f(x, a, b, c):
|
|
# transform is using apply iff x is not a DataFrame
|
|
if use_apply == isinstance(x, frame_or_series):
|
|
# Force transform to fallback
|
|
raise ValueError
|
|
assert [a, b] == expected_args
|
|
assert c == expected_kwargs["c"]
|
|
return x
|
|
|
|
frame_or_series([1]).transform(f, 0, *expected_args, **expected_kwargs)
|
|
|
|
|
|
def test_transform_empty_dataframe():
|
|
# https://github.com/pandas-dev/pandas/issues/39636
|
|
df = DataFrame([], columns=["col1", "col2"])
|
|
result = df.transform(lambda x: x + 10)
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
result = df["col1"].transform(lambda x: x + 10)
|
|
tm.assert_series_equal(result, df["col1"])
|