Inzynierka/Lib/site-packages/pandas/tests/arrays/period/test_arrow_compat.py
2023-06-02 12:51:02 +02:00

125 lines
3.5 KiB
Python

import pytest
from pandas.compat.pyarrow import pa_version_under10p0
from pandas.core.dtypes.dtypes import PeriodDtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import (
PeriodArray,
period_array,
)
pa = pytest.importorskip("pyarrow", minversion="1.0.1")
def test_arrow_extension_type():
from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
p1 = ArrowPeriodType("D")
p2 = ArrowPeriodType("D")
p3 = ArrowPeriodType("M")
assert p1.freq == "D"
assert p1 == p2
assert p1 != p3
assert hash(p1) == hash(p2)
assert hash(p1) != hash(p3)
@pytest.mark.xfail(not pa_version_under10p0, reason="Wrong behavior with pyarrow 10")
@pytest.mark.parametrize(
"data, freq",
[
(pd.date_range("2017", periods=3), "D"),
(pd.date_range("2017", periods=3, freq="A"), "A-DEC"),
],
)
def test_arrow_array(data, freq):
from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
periods = period_array(data, freq=freq)
result = pa.array(periods)
assert isinstance(result.type, ArrowPeriodType)
assert result.type.freq == freq
expected = pa.array(periods.asi8, type="int64")
assert result.storage.equals(expected)
# convert to its storage type
result = pa.array(periods, type=pa.int64())
assert result.equals(expected)
# unsupported conversions
msg = "Not supported to convert PeriodArray to 'double' type"
with pytest.raises(TypeError, match=msg):
pa.array(periods, type="float64")
with pytest.raises(TypeError, match="different 'freq'"):
pa.array(periods, type=ArrowPeriodType("T"))
def test_arrow_array_missing():
from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
arr = PeriodArray([1, 2, 3], freq="D")
arr[1] = pd.NaT
result = pa.array(arr)
assert isinstance(result.type, ArrowPeriodType)
assert result.type.freq == "D"
expected = pa.array([1, None, 3], type="int64")
assert result.storage.equals(expected)
def test_arrow_table_roundtrip():
from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
arr = PeriodArray([1, 2, 3], freq="D")
arr[1] = pd.NaT
df = pd.DataFrame({"a": arr})
table = pa.table(df)
assert isinstance(table.field("a").type, ArrowPeriodType)
result = table.to_pandas()
assert isinstance(result["a"].dtype, PeriodDtype)
tm.assert_frame_equal(result, df)
table2 = pa.concat_tables([table, table])
result = table2.to_pandas()
expected = pd.concat([df, df], ignore_index=True)
tm.assert_frame_equal(result, expected)
def test_arrow_load_from_zero_chunks():
# GH-41040
from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
arr = PeriodArray([], freq="D")
df = pd.DataFrame({"a": arr})
table = pa.table(df)
assert isinstance(table.field("a").type, ArrowPeriodType)
table = pa.table(
[pa.chunked_array([], type=table.column(0).type)], schema=table.schema
)
result = table.to_pandas()
assert isinstance(result["a"].dtype, PeriodDtype)
tm.assert_frame_equal(result, df)
def test_arrow_table_roundtrip_without_metadata():
arr = PeriodArray([1, 2, 3], freq="H")
arr[1] = pd.NaT
df = pd.DataFrame({"a": arr})
table = pa.table(df)
# remove the metadata
table = table.replace_schema_metadata()
assert table.schema.metadata is None
result = table.to_pandas()
assert isinstance(result["a"].dtype, PeriodDtype)
tm.assert_frame_equal(result, df)