Inzynierka/Lib/site-packages/pandas/tests/copy_view/test_array.py
2023-06-02 12:51:02 +02:00

186 lines
5.5 KiB
Python

import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
date_range,
)
import pandas._testing as tm
from pandas.tests.copy_view.util import get_array
# -----------------------------------------------------------------------------
# Copy/view behaviour for accessing underlying array of Series/DataFrame
@pytest.mark.parametrize(
"method",
[lambda ser: ser.values, lambda ser: np.asarray(ser)],
ids=["values", "asarray"],
)
def test_series_values(using_copy_on_write, method):
ser = Series([1, 2, 3], name="name")
ser_orig = ser.copy()
arr = method(ser)
if using_copy_on_write:
# .values still gives a view but is read-only
assert np.shares_memory(arr, get_array(ser, "name"))
assert arr.flags.writeable is False
# mutating series through arr therefore doesn't work
with pytest.raises(ValueError, match="read-only"):
arr[0] = 0
tm.assert_series_equal(ser, ser_orig)
# mutating the series itself still works
ser.iloc[0] = 0
assert ser.values[0] == 0
else:
assert arr.flags.writeable is True
arr[0] = 0
assert ser.iloc[0] == 0
@pytest.mark.parametrize(
"method",
[lambda df: df.values, lambda df: np.asarray(df)],
ids=["values", "asarray"],
)
def test_dataframe_values(using_copy_on_write, using_array_manager, method):
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df_orig = df.copy()
arr = method(df)
if using_copy_on_write:
# .values still gives a view but is read-only
assert np.shares_memory(arr, get_array(df, "a"))
assert arr.flags.writeable is False
# mutating series through arr therefore doesn't work
with pytest.raises(ValueError, match="read-only"):
arr[0, 0] = 0
tm.assert_frame_equal(df, df_orig)
# mutating the series itself still works
df.iloc[0, 0] = 0
assert df.values[0, 0] == 0
else:
assert arr.flags.writeable is True
arr[0, 0] = 0
if not using_array_manager:
assert df.iloc[0, 0] == 0
else:
tm.assert_frame_equal(df, df_orig)
def test_series_to_numpy(using_copy_on_write):
ser = Series([1, 2, 3], name="name")
ser_orig = ser.copy()
# default: copy=False, no dtype or NAs
arr = ser.to_numpy()
if using_copy_on_write:
# to_numpy still gives a view but is read-only
assert np.shares_memory(arr, get_array(ser, "name"))
assert arr.flags.writeable is False
# mutating series through arr therefore doesn't work
with pytest.raises(ValueError, match="read-only"):
arr[0] = 0
tm.assert_series_equal(ser, ser_orig)
# mutating the series itself still works
ser.iloc[0] = 0
assert ser.values[0] == 0
else:
assert arr.flags.writeable is True
arr[0] = 0
assert ser.iloc[0] == 0
# specify copy=False gives a writeable array
ser = Series([1, 2, 3], name="name")
arr = ser.to_numpy(copy=True)
assert not np.shares_memory(arr, get_array(ser, "name"))
assert arr.flags.writeable is True
# specifying a dtype that already causes a copy also gives a writeable array
ser = Series([1, 2, 3], name="name")
arr = ser.to_numpy(dtype="float64")
assert not np.shares_memory(arr, get_array(ser, "name"))
assert arr.flags.writeable is True
@pytest.mark.parametrize("order", ["F", "C"])
def test_ravel_read_only(using_copy_on_write, order):
ser = Series([1, 2, 3])
arr = ser.ravel(order=order)
if using_copy_on_write:
assert arr.flags.writeable is False
assert np.shares_memory(get_array(ser), arr)
def test_series_array_ea_dtypes(using_copy_on_write):
ser = Series([1, 2, 3], dtype="Int64")
arr = np.asarray(ser, dtype="int64")
assert np.shares_memory(arr, get_array(ser))
if using_copy_on_write:
assert arr.flags.writeable is False
else:
assert arr.flags.writeable is True
arr = np.asarray(ser)
assert not np.shares_memory(arr, get_array(ser))
assert arr.flags.writeable is True
def test_dataframe_array_ea_dtypes(using_copy_on_write):
df = DataFrame({"a": [1, 2, 3]}, dtype="Int64")
arr = np.asarray(df, dtype="int64")
# TODO: This should be able to share memory, but we are roundtripping
# through object
assert not np.shares_memory(arr, get_array(df, "a"))
assert arr.flags.writeable is True
arr = np.asarray(df)
if using_copy_on_write:
# TODO(CoW): This should be True
assert arr.flags.writeable is False
else:
assert arr.flags.writeable is True
def test_dataframe_array_string_dtype(using_copy_on_write, using_array_manager):
df = DataFrame({"a": ["a", "b"]}, dtype="string")
arr = np.asarray(df)
if not using_array_manager:
assert np.shares_memory(arr, get_array(df, "a"))
if using_copy_on_write:
assert arr.flags.writeable is False
else:
assert arr.flags.writeable is True
def test_dataframe_multiple_numpy_dtypes():
df = DataFrame({"a": [1, 2, 3], "b": 1.5})
arr = np.asarray(df)
assert not np.shares_memory(arr, get_array(df, "a"))
assert arr.flags.writeable is True
def test_values_is_ea(using_copy_on_write):
df = DataFrame({"a": date_range("2012-01-01", periods=3)})
arr = np.asarray(df)
if using_copy_on_write:
assert arr.flags.writeable is False
else:
assert arr.flags.writeable is True
def test_empty_dataframe():
df = DataFrame()
arr = np.asarray(df)
assert arr.flags.writeable is True