Inzynierka/Lib/site-packages/pandas/tests/frame/indexing/test_mask.py
2023-06-02 12:51:02 +02:00

153 lines
4.6 KiB
Python

"""
Tests for DataFrame.mask; tests DataFrame.where as a side-effect.
"""
import numpy as np
from pandas import (
NA,
DataFrame,
Float64Dtype,
Series,
StringDtype,
Timedelta,
isna,
)
import pandas._testing as tm
class TestDataFrameMask:
def test_mask(self):
df = DataFrame(np.random.randn(5, 3))
cond = df > 0
rs = df.where(cond, np.nan)
tm.assert_frame_equal(rs, df.mask(df <= 0))
tm.assert_frame_equal(rs, df.mask(~cond))
other = DataFrame(np.random.randn(5, 3))
rs = df.where(cond, other)
tm.assert_frame_equal(rs, df.mask(df <= 0, other))
tm.assert_frame_equal(rs, df.mask(~cond, other))
def test_mask2(self):
# see GH#21891
df = DataFrame([1, 2])
res = df.mask([[True], [False]])
exp = DataFrame([np.nan, 2])
tm.assert_frame_equal(res, exp)
def test_mask_inplace(self):
# GH#8801
df = DataFrame(np.random.randn(5, 3))
cond = df > 0
rdf = df.copy()
return_value = rdf.where(cond, inplace=True)
assert return_value is None
tm.assert_frame_equal(rdf, df.where(cond))
tm.assert_frame_equal(rdf, df.mask(~cond))
rdf = df.copy()
return_value = rdf.where(cond, -df, inplace=True)
assert return_value is None
tm.assert_frame_equal(rdf, df.where(cond, -df))
tm.assert_frame_equal(rdf, df.mask(~cond, -df))
def test_mask_edge_case_1xN_frame(self):
# GH#4071
df = DataFrame([[1, 2]])
res = df.mask(DataFrame([[True, False]]))
expec = DataFrame([[np.nan, 2]])
tm.assert_frame_equal(res, expec)
def test_mask_callable(self):
# GH#12533
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
result = df.mask(lambda x: x > 4, lambda x: x + 1)
exp = DataFrame([[1, 2, 3], [4, 6, 7], [8, 9, 10]])
tm.assert_frame_equal(result, exp)
tm.assert_frame_equal(result, df.mask(df > 4, df + 1))
# return ndarray and scalar
result = df.mask(lambda x: (x % 2 == 0).values, lambda x: 99)
exp = DataFrame([[1, 99, 3], [99, 5, 99], [7, 99, 9]])
tm.assert_frame_equal(result, exp)
tm.assert_frame_equal(result, df.mask(df % 2 == 0, 99))
# chain
result = (df + 2).mask(lambda x: x > 8, lambda x: x + 10)
exp = DataFrame([[3, 4, 5], [6, 7, 8], [19, 20, 21]])
tm.assert_frame_equal(result, exp)
tm.assert_frame_equal(result, (df + 2).mask((df + 2) > 8, (df + 2) + 10))
def test_mask_dtype_bool_conversion(self):
# GH#3733
df = DataFrame(data=np.random.randn(100, 50))
df = df.where(df > 0) # create nans
bools = df > 0
mask = isna(df)
expected = bools.astype(object).mask(mask)
result = bools.mask(mask)
tm.assert_frame_equal(result, expected)
def test_mask_stringdtype(frame_or_series):
# GH 40824
obj = DataFrame(
{"A": ["foo", "bar", "baz", NA]},
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
filtered_obj = DataFrame(
{"A": ["this", "that"]}, index=["id2", "id3"], dtype=StringDtype()
)
expected = DataFrame(
{"A": [NA, "this", "that", NA]},
index=["id1", "id2", "id3", "id4"],
dtype=StringDtype(),
)
if frame_or_series is Series:
obj = obj["A"]
filtered_obj = filtered_obj["A"]
expected = expected["A"]
filter_ser = Series([False, True, True, False])
result = obj.mask(filter_ser, filtered_obj)
tm.assert_equal(result, expected)
def test_mask_where_dtype_timedelta():
# https://github.com/pandas-dev/pandas/issues/39548
df = DataFrame([Timedelta(i, unit="d") for i in range(5)])
expected = DataFrame(np.full(5, np.nan, dtype="timedelta64[ns]"))
tm.assert_frame_equal(df.mask(df.notna()), expected)
expected = DataFrame(
[np.nan, np.nan, np.nan, Timedelta("3 day"), Timedelta("4 day")]
)
tm.assert_frame_equal(df.where(df > Timedelta(2, unit="d")), expected)
def test_mask_return_dtype():
# GH#50488
ser = Series([0.0, 1.0, 2.0, 3.0], dtype=Float64Dtype())
cond = ~ser.isna()
other = Series([True, False, True, False])
excepted = Series([1.0, 0.0, 1.0, 0.0], dtype=ser.dtype)
result = ser.mask(cond, other)
tm.assert_series_equal(result, excepted)
def test_mask_inplace_no_other():
# GH#51685
df = DataFrame({"a": [1, 2], "b": ["x", "y"]})
cond = DataFrame({"a": [True, False], "b": [False, True]})
df.mask(cond, inplace=True)
expected = DataFrame({"a": [np.nan, 2], "b": ["x", np.nan]})
tm.assert_frame_equal(df, expected)