Inzynierka/Lib/site-packages/pandas/tests/frame/methods/test_combine_first.py
2023-06-02 12:51:02 +02:00

541 lines
18 KiB
Python

from datetime import datetime
import numpy as np
import pytest
from pandas.core.dtypes.cast import find_common_type
from pandas.core.dtypes.common import is_dtype_equal
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
class TestDataFrameCombineFirst:
def test_combine_first_mixed(self):
a = Series(["a", "b"], index=range(2))
b = Series(range(2), index=range(2))
f = DataFrame({"A": a, "B": b})
a = Series(["a", "b"], index=range(5, 7))
b = Series(range(2), index=range(5, 7))
g = DataFrame({"A": a, "B": b})
exp = DataFrame({"A": list("abab"), "B": [0, 1, 0, 1]}, index=[0, 1, 5, 6])
combined = f.combine_first(g)
tm.assert_frame_equal(combined, exp)
def test_combine_first(self, float_frame):
# disjoint
head, tail = float_frame[:5], float_frame[5:]
combined = head.combine_first(tail)
reordered_frame = float_frame.reindex(combined.index)
tm.assert_frame_equal(combined, reordered_frame)
assert tm.equalContents(combined.columns, float_frame.columns)
tm.assert_series_equal(combined["A"], reordered_frame["A"])
# same index
fcopy = float_frame.copy()
fcopy["A"] = 1
del fcopy["C"]
fcopy2 = float_frame.copy()
fcopy2["B"] = 0
del fcopy2["D"]
combined = fcopy.combine_first(fcopy2)
assert (combined["A"] == 1).all()
tm.assert_series_equal(combined["B"], fcopy["B"])
tm.assert_series_equal(combined["C"], fcopy2["C"])
tm.assert_series_equal(combined["D"], fcopy["D"])
# overlap
head, tail = reordered_frame[:10].copy(), reordered_frame
head["A"] = 1
combined = head.combine_first(tail)
assert (combined["A"][:10] == 1).all()
# reverse overlap
tail.iloc[:10, tail.columns.get_loc("A")] = 0
combined = tail.combine_first(head)
assert (combined["A"][:10] == 0).all()
# no overlap
f = float_frame[:10]
g = float_frame[10:]
combined = f.combine_first(g)
tm.assert_series_equal(combined["A"].reindex(f.index), f["A"])
tm.assert_series_equal(combined["A"].reindex(g.index), g["A"])
# corner cases
comb = float_frame.combine_first(DataFrame())
tm.assert_frame_equal(comb, float_frame)
comb = DataFrame().combine_first(float_frame)
tm.assert_frame_equal(comb, float_frame)
comb = float_frame.combine_first(DataFrame(index=["faz", "boo"]))
assert "faz" in comb.index
# #2525
df = DataFrame({"a": [1]}, index=[datetime(2012, 1, 1)])
df2 = DataFrame(columns=["b"])
result = df.combine_first(df2)
assert "b" in result
def test_combine_first_mixed_bug(self):
idx = Index(["a", "b", "c", "e"])
ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx)
ser2 = Series(["a", "b", "c", "e"], index=idx)
ser3 = Series([12, 4, 5, 97], index=idx)
frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3})
idx = Index(["a", "b", "c", "f"])
ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx)
ser2 = Series(["a", "b", "c", "f"], index=idx)
ser3 = Series([12, 4, 5, 97], index=idx)
frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3})
combined = frame1.combine_first(frame2)
assert len(combined.columns) == 5
def test_combine_first_same_as_in_update(self):
# gh 3016 (same as in update)
df = DataFrame(
[[1.0, 2.0, False, True], [4.0, 5.0, True, False]],
columns=["A", "B", "bool1", "bool2"],
)
other = DataFrame([[45, 45]], index=[0], columns=["A", "B"])
result = df.combine_first(other)
tm.assert_frame_equal(result, df)
df.loc[0, "A"] = np.nan
result = df.combine_first(other)
df.loc[0, "A"] = 45
tm.assert_frame_equal(result, df)
def test_combine_first_doc_example(self):
# doc example
df1 = DataFrame(
{"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
)
df2 = DataFrame(
{
"A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
"B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
}
)
result = df1.combine_first(df2)
expected = DataFrame({"A": [1, 2, 3, 5, 3, 7.0], "B": [np.nan, 2, 3, 4, 6, 8]})
tm.assert_frame_equal(result, expected)
def test_combine_first_return_obj_type_with_bools(self):
# GH3552
df1 = DataFrame(
[[np.nan, 3.0, True], [-4.6, np.nan, True], [np.nan, 7.0, False]]
)
df2 = DataFrame([[-42.6, np.nan, True], [-5.0, 1.6, False]], index=[1, 2])
expected = Series([True, True, False], name=2, dtype=bool)
result_12 = df1.combine_first(df2)[2]
tm.assert_series_equal(result_12, expected)
result_21 = df2.combine_first(df1)[2]
tm.assert_series_equal(result_21, expected)
@pytest.mark.parametrize(
"data1, data2, data_expected",
(
(
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[pd.NaT, pd.NaT, pd.NaT],
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
),
(
[pd.NaT, pd.NaT, pd.NaT],
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
),
(
[datetime(2000, 1, 2), pd.NaT, pd.NaT],
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3)],
),
(
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[datetime(2000, 1, 2), pd.NaT, pd.NaT],
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
),
),
)
def test_combine_first_convert_datatime_correctly(
self, data1, data2, data_expected
):
# GH 3593
df1, df2 = DataFrame({"a": data1}), DataFrame({"a": data2})
result = df1.combine_first(df2)
expected = DataFrame({"a": data_expected})
tm.assert_frame_equal(result, expected)
def test_combine_first_align_nan(self):
# GH 7509 (not fixed)
dfa = DataFrame([[pd.Timestamp("2011-01-01"), 2]], columns=["a", "b"])
dfb = DataFrame([[4], [5]], columns=["b"])
assert dfa["a"].dtype == "datetime64[ns]"
assert dfa["b"].dtype == "int64"
res = dfa.combine_first(dfb)
exp = DataFrame(
{"a": [pd.Timestamp("2011-01-01"), pd.NaT], "b": [2, 5]},
columns=["a", "b"],
)
tm.assert_frame_equal(res, exp)
assert res["a"].dtype == "datetime64[ns]"
# TODO: this must be int64
assert res["b"].dtype == "int64"
res = dfa.iloc[:0].combine_first(dfb)
exp = DataFrame({"a": [np.nan, np.nan], "b": [4, 5]}, columns=["a", "b"])
tm.assert_frame_equal(res, exp)
# TODO: this must be datetime64
assert res["a"].dtype == "float64"
# TODO: this must be int64
assert res["b"].dtype == "int64"
def test_combine_first_timezone(self):
# see gh-7630
data1 = pd.to_datetime("20100101 01:01").tz_localize("UTC")
df1 = DataFrame(
columns=["UTCdatetime", "abc"],
data=data1,
index=pd.date_range("20140627", periods=1),
)
data2 = pd.to_datetime("20121212 12:12").tz_localize("UTC")
df2 = DataFrame(
columns=["UTCdatetime", "xyz"],
data=data2,
index=pd.date_range("20140628", periods=1),
)
res = df2[["UTCdatetime"]].combine_first(df1)
exp = DataFrame(
{
"UTCdatetime": [
pd.Timestamp("2010-01-01 01:01", tz="UTC"),
pd.Timestamp("2012-12-12 12:12", tz="UTC"),
],
"abc": [pd.Timestamp("2010-01-01 01:01:00", tz="UTC"), pd.NaT],
},
columns=["UTCdatetime", "abc"],
index=pd.date_range("20140627", periods=2, freq="D"),
)
assert res["UTCdatetime"].dtype == "datetime64[ns, UTC]"
assert res["abc"].dtype == "datetime64[ns, UTC]"
tm.assert_frame_equal(res, exp)
# see gh-10567
dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="UTC")
df1 = DataFrame({"DATE": dts1})
dts2 = pd.date_range("2015-01-03", "2015-01-05", tz="UTC")
df2 = DataFrame({"DATE": dts2})
res = df1.combine_first(df2)
tm.assert_frame_equal(res, df1)
assert res["DATE"].dtype == "datetime64[ns, UTC]"
dts1 = pd.DatetimeIndex(
["2011-01-01", "NaT", "2011-01-03", "2011-01-04"], tz="US/Eastern"
)
df1 = DataFrame({"DATE": dts1}, index=[1, 3, 5, 7])
dts2 = pd.DatetimeIndex(
["2012-01-01", "2012-01-02", "2012-01-03"], tz="US/Eastern"
)
df2 = DataFrame({"DATE": dts2}, index=[2, 4, 5])
res = df1.combine_first(df2)
exp_dts = pd.DatetimeIndex(
[
"2011-01-01",
"2012-01-01",
"NaT",
"2012-01-02",
"2011-01-03",
"2011-01-04",
],
tz="US/Eastern",
)
exp = DataFrame({"DATE": exp_dts}, index=[1, 2, 3, 4, 5, 7])
tm.assert_frame_equal(res, exp)
# different tz
dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="US/Eastern")
df1 = DataFrame({"DATE": dts1})
dts2 = pd.date_range("2015-01-03", "2015-01-05")
df2 = DataFrame({"DATE": dts2})
# if df1 doesn't have NaN, keep its dtype
res = df1.combine_first(df2)
tm.assert_frame_equal(res, df1)
assert res["DATE"].dtype == "datetime64[ns, US/Eastern]"
dts1 = pd.date_range("2015-01-01", "2015-01-02", tz="US/Eastern")
df1 = DataFrame({"DATE": dts1})
dts2 = pd.date_range("2015-01-01", "2015-01-03")
df2 = DataFrame({"DATE": dts2})
res = df1.combine_first(df2)
exp_dts = [
pd.Timestamp("2015-01-01", tz="US/Eastern"),
pd.Timestamp("2015-01-02", tz="US/Eastern"),
pd.Timestamp("2015-01-03"),
]
exp = DataFrame({"DATE": exp_dts})
tm.assert_frame_equal(res, exp)
assert res["DATE"].dtype == "object"
def test_combine_first_timedelta(self):
data1 = pd.TimedeltaIndex(["1 day", "NaT", "3 day", "4day"])
df1 = DataFrame({"TD": data1}, index=[1, 3, 5, 7])
data2 = pd.TimedeltaIndex(["10 day", "11 day", "12 day"])
df2 = DataFrame({"TD": data2}, index=[2, 4, 5])
res = df1.combine_first(df2)
exp_dts = pd.TimedeltaIndex(
["1 day", "10 day", "NaT", "11 day", "3 day", "4 day"]
)
exp = DataFrame({"TD": exp_dts}, index=[1, 2, 3, 4, 5, 7])
tm.assert_frame_equal(res, exp)
assert res["TD"].dtype == "timedelta64[ns]"
def test_combine_first_period(self):
data1 = pd.PeriodIndex(["2011-01", "NaT", "2011-03", "2011-04"], freq="M")
df1 = DataFrame({"P": data1}, index=[1, 3, 5, 7])
data2 = pd.PeriodIndex(["2012-01-01", "2012-02", "2012-03"], freq="M")
df2 = DataFrame({"P": data2}, index=[2, 4, 5])
res = df1.combine_first(df2)
exp_dts = pd.PeriodIndex(
["2011-01", "2012-01", "NaT", "2012-02", "2011-03", "2011-04"], freq="M"
)
exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7])
tm.assert_frame_equal(res, exp)
assert res["P"].dtype == data1.dtype
# different freq
dts2 = pd.PeriodIndex(["2012-01-01", "2012-01-02", "2012-01-03"], freq="D")
df2 = DataFrame({"P": dts2}, index=[2, 4, 5])
res = df1.combine_first(df2)
exp_dts = [
pd.Period("2011-01", freq="M"),
pd.Period("2012-01-01", freq="D"),
pd.NaT,
pd.Period("2012-01-02", freq="D"),
pd.Period("2011-03", freq="M"),
pd.Period("2011-04", freq="M"),
]
exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7])
tm.assert_frame_equal(res, exp)
assert res["P"].dtype == "object"
def test_combine_first_int(self):
# GH14687 - integer series that do no align exactly
df1 = DataFrame({"a": [0, 1, 3, 5]}, dtype="int64")
df2 = DataFrame({"a": [1, 4]}, dtype="int64")
result_12 = df1.combine_first(df2)
expected_12 = DataFrame({"a": [0, 1, 3, 5]})
tm.assert_frame_equal(result_12, expected_12)
result_21 = df2.combine_first(df1)
expected_21 = DataFrame({"a": [1, 4, 3, 5]})
tm.assert_frame_equal(result_21, expected_21)
@pytest.mark.parametrize("val", [1, 1.0])
def test_combine_first_with_asymmetric_other(self, val):
# see gh-20699
df1 = DataFrame({"isNum": [val]})
df2 = DataFrame({"isBool": [True]})
res = df1.combine_first(df2)
exp = DataFrame({"isBool": [True], "isNum": [val]})
tm.assert_frame_equal(res, exp)
def test_combine_first_string_dtype_only_na(self, nullable_string_dtype):
# GH: 37519
df = DataFrame(
{"a": ["962", "85"], "b": [pd.NA] * 2}, dtype=nullable_string_dtype
)
df2 = DataFrame({"a": ["85"], "b": [pd.NA]}, dtype=nullable_string_dtype)
df.set_index(["a", "b"], inplace=True)
df2.set_index(["a", "b"], inplace=True)
result = df.combine_first(df2)
expected = DataFrame(
{"a": ["962", "85"], "b": [pd.NA] * 2}, dtype=nullable_string_dtype
).set_index(["a", "b"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"scalar1, scalar2",
[
(datetime(2020, 1, 1), datetime(2020, 1, 2)),
(pd.Period("2020-01-01", "D"), pd.Period("2020-01-02", "D")),
(pd.Timedelta("89 days"), pd.Timedelta("60 min")),
(pd.Interval(left=0, right=1), pd.Interval(left=2, right=3, closed="left")),
],
)
def test_combine_first_timestamp_bug(scalar1, scalar2, nulls_fixture):
# GH28481
na_value = nulls_fixture
frame = DataFrame([[na_value, na_value]], columns=["a", "b"])
other = DataFrame([[scalar1, scalar2]], columns=["b", "c"])
common_dtype = find_common_type([frame.dtypes["b"], other.dtypes["b"]])
if is_dtype_equal(common_dtype, "object") or frame.dtypes["b"] == other.dtypes["b"]:
val = scalar1
else:
val = na_value
result = frame.combine_first(other)
expected = DataFrame([[na_value, val, scalar2]], columns=["a", "b", "c"])
expected["b"] = expected["b"].astype(common_dtype)
tm.assert_frame_equal(result, expected)
def test_combine_first_timestamp_bug_NaT():
# GH28481
frame = DataFrame([[pd.NaT, pd.NaT]], columns=["a", "b"])
other = DataFrame(
[[datetime(2020, 1, 1), datetime(2020, 1, 2)]], columns=["b", "c"]
)
result = frame.combine_first(other)
expected = DataFrame(
[[pd.NaT, datetime(2020, 1, 1), datetime(2020, 1, 2)]], columns=["a", "b", "c"]
)
tm.assert_frame_equal(result, expected)
def test_combine_first_with_nan_multiindex():
# gh-36562
mi1 = MultiIndex.from_arrays(
[["b", "b", "c", "a", "b", np.nan], [1, 2, 3, 4, 5, 6]], names=["a", "b"]
)
df = DataFrame({"c": [1, 1, 1, 1, 1, 1]}, index=mi1)
mi2 = MultiIndex.from_arrays(
[["a", "b", "c", "a", "b", "d"], [1, 1, 1, 1, 1, 1]], names=["a", "b"]
)
s = Series([1, 2, 3, 4, 5, 6], index=mi2)
res = df.combine_first(DataFrame({"d": s}))
mi_expected = MultiIndex.from_arrays(
[
["a", "a", "a", "b", "b", "b", "b", "c", "c", "d", np.nan],
[1, 1, 4, 1, 1, 2, 5, 1, 3, 1, 6],
],
names=["a", "b"],
)
expected = DataFrame(
{
"c": [np.nan, np.nan, 1, 1, 1, 1, 1, np.nan, 1, np.nan, 1],
"d": [1.0, 4.0, np.nan, 2.0, 5.0, np.nan, np.nan, 3.0, np.nan, 6.0, np.nan],
},
index=mi_expected,
)
tm.assert_frame_equal(res, expected)
def test_combine_preserve_dtypes():
# GH7509
a_column = Series(["a", "b"], index=range(2))
b_column = Series(range(2), index=range(2))
df1 = DataFrame({"A": a_column, "B": b_column})
c_column = Series(["a", "b"], index=range(5, 7))
b_column = Series(range(-1, 1), index=range(5, 7))
df2 = DataFrame({"B": b_column, "C": c_column})
expected = DataFrame(
{
"A": ["a", "b", np.nan, np.nan],
"B": [0, 1, -1, 0],
"C": [np.nan, np.nan, "a", "b"],
},
index=[0, 1, 5, 6],
)
combined = df1.combine_first(df2)
tm.assert_frame_equal(combined, expected)
def test_combine_first_duplicates_rows_for_nan_index_values():
# GH39881
df1 = DataFrame(
{"x": [9, 10, 11]},
index=MultiIndex.from_arrays([[1, 2, 3], [np.nan, 5, 6]], names=["a", "b"]),
)
df2 = DataFrame(
{"y": [12, 13, 14]},
index=MultiIndex.from_arrays([[1, 2, 4], [np.nan, 5, 7]], names=["a", "b"]),
)
expected = DataFrame(
{
"x": [9.0, 10.0, 11.0, np.nan],
"y": [12.0, 13.0, np.nan, 14.0],
},
index=MultiIndex.from_arrays(
[[1, 2, 3, 4], [np.nan, 5.0, 6.0, 7.0]], names=["a", "b"]
),
)
combined = df1.combine_first(df2)
tm.assert_frame_equal(combined, expected)
def test_combine_first_int64_not_cast_to_float64():
# GH 28613
df_1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df_2 = DataFrame({"A": [1, 20, 30], "B": [40, 50, 60], "C": [12, 34, 65]})
result = df_1.combine_first(df_2)
expected = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [12, 34, 65]})
tm.assert_frame_equal(result, expected)
def test_midx_losing_dtype():
# GH#49830
midx = MultiIndex.from_arrays([[0, 0], [np.nan, np.nan]])
midx2 = MultiIndex.from_arrays([[1, 1], [np.nan, np.nan]])
df1 = DataFrame({"a": [None, 4]}, index=midx)
df2 = DataFrame({"a": [3, 3]}, index=midx2)
result = df1.combine_first(df2)
expected_midx = MultiIndex.from_arrays(
[[0, 0, 1, 1], [np.nan, np.nan, np.nan, np.nan]]
)
expected = DataFrame({"a": [np.nan, 4, 3, 3]}, index=expected_midx)
tm.assert_frame_equal(result, expected)