630 lines
22 KiB
Python
630 lines
22 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
CategoricalIndex,
|
|
DataFrame,
|
|
Index,
|
|
NaT,
|
|
Series,
|
|
date_range,
|
|
offsets,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameShift:
|
|
@pytest.mark.parametrize(
|
|
"input_data, output_data",
|
|
[(np.empty(shape=(0,)), []), (np.ones(shape=(2,)), [np.nan, 1.0])],
|
|
)
|
|
def test_shift_non_writable_array(self, input_data, output_data, frame_or_series):
|
|
# GH21049 Verify whether non writable numpy array is shiftable
|
|
input_data.setflags(write=False)
|
|
|
|
result = frame_or_series(input_data).shift(1)
|
|
if frame_or_series is not Series:
|
|
# need to explicitly specify columns in the empty case
|
|
expected = frame_or_series(
|
|
output_data,
|
|
index=range(len(output_data)),
|
|
columns=range(1),
|
|
dtype="float64",
|
|
)
|
|
else:
|
|
expected = frame_or_series(output_data, dtype="float64")
|
|
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_shift_mismatched_freq(self, frame_or_series):
|
|
ts = frame_or_series(
|
|
np.random.randn(5), index=date_range("1/1/2000", periods=5, freq="H")
|
|
)
|
|
|
|
result = ts.shift(1, freq="5T")
|
|
exp_index = ts.index.shift(1, freq="5T")
|
|
tm.assert_index_equal(result.index, exp_index)
|
|
|
|
# GH#1063, multiple of same base
|
|
result = ts.shift(1, freq="4H")
|
|
exp_index = ts.index + offsets.Hour(4)
|
|
tm.assert_index_equal(result.index, exp_index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"obj",
|
|
[
|
|
Series([np.arange(5)]),
|
|
date_range("1/1/2011", periods=24, freq="H"),
|
|
Series(range(5), index=date_range("2017", periods=5)),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("shift_size", [0, 1, 2])
|
|
def test_shift_always_copy(self, obj, shift_size, frame_or_series):
|
|
# GH#22397
|
|
if frame_or_series is not Series:
|
|
obj = obj.to_frame()
|
|
assert obj.shift(shift_size) is not obj
|
|
|
|
def test_shift_object_non_scalar_fill(self):
|
|
# shift requires scalar fill_value except for object dtype
|
|
ser = Series(range(3))
|
|
with pytest.raises(ValueError, match="fill_value must be a scalar"):
|
|
ser.shift(1, fill_value=[])
|
|
|
|
df = ser.to_frame()
|
|
with pytest.raises(ValueError, match="fill_value must be a scalar"):
|
|
df.shift(1, fill_value=np.arange(3))
|
|
|
|
obj_ser = ser.astype(object)
|
|
result = obj_ser.shift(1, fill_value={})
|
|
assert result[0] == {}
|
|
|
|
obj_df = obj_ser.to_frame()
|
|
result = obj_df.shift(1, fill_value={})
|
|
assert result.iloc[0, 0] == {}
|
|
|
|
def test_shift_int(self, datetime_frame, frame_or_series):
|
|
ts = tm.get_obj(datetime_frame, frame_or_series).astype(int)
|
|
shifted = ts.shift(1)
|
|
expected = ts.astype(float).shift(1)
|
|
tm.assert_equal(shifted, expected)
|
|
|
|
@pytest.mark.parametrize("dtype", ["int32", "int64"])
|
|
def test_shift_32bit_take(self, frame_or_series, dtype):
|
|
# 32-bit taking
|
|
# GH#8129
|
|
index = date_range("2000-01-01", periods=5)
|
|
arr = np.arange(5, dtype=dtype)
|
|
s1 = frame_or_series(arr, index=index)
|
|
p = arr[1]
|
|
result = s1.shift(periods=p)
|
|
expected = frame_or_series([np.nan, 0, 1, 2, 3], index=index)
|
|
tm.assert_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("periods", [1, 2, 3, 4])
|
|
def test_shift_preserve_freqstr(self, periods, frame_or_series):
|
|
# GH#21275
|
|
obj = frame_or_series(
|
|
range(periods),
|
|
index=date_range("2016-1-1 00:00:00", periods=periods, freq="H"),
|
|
)
|
|
|
|
result = obj.shift(1, "2H")
|
|
|
|
expected = frame_or_series(
|
|
range(periods),
|
|
index=date_range("2016-1-1 02:00:00", periods=periods, freq="H"),
|
|
)
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_shift_dst(self, frame_or_series):
|
|
# GH#13926
|
|
dates = date_range("2016-11-06", freq="H", periods=10, tz="US/Eastern")
|
|
obj = frame_or_series(dates)
|
|
|
|
res = obj.shift(0)
|
|
tm.assert_equal(res, obj)
|
|
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
|
|
|
|
res = obj.shift(1)
|
|
exp_vals = [NaT] + dates.astype(object).values.tolist()[:9]
|
|
exp = frame_or_series(exp_vals)
|
|
tm.assert_equal(res, exp)
|
|
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
|
|
|
|
res = obj.shift(-2)
|
|
exp_vals = dates.astype(object).values.tolist()[2:] + [NaT, NaT]
|
|
exp = frame_or_series(exp_vals)
|
|
tm.assert_equal(res, exp)
|
|
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
|
|
|
|
@pytest.mark.parametrize("ex", [10, -10, 20, -20])
|
|
def test_shift_dst_beyond(self, frame_or_series, ex):
|
|
# GH#13926
|
|
dates = date_range("2016-11-06", freq="H", periods=10, tz="US/Eastern")
|
|
obj = frame_or_series(dates)
|
|
res = obj.shift(ex)
|
|
exp = frame_or_series([NaT] * 10, dtype="datetime64[ns, US/Eastern]")
|
|
tm.assert_equal(res, exp)
|
|
assert tm.get_dtype(res) == "datetime64[ns, US/Eastern]"
|
|
|
|
def test_shift_by_zero(self, datetime_frame, frame_or_series):
|
|
# shift by 0
|
|
obj = tm.get_obj(datetime_frame, frame_or_series)
|
|
unshifted = obj.shift(0)
|
|
tm.assert_equal(unshifted, obj)
|
|
|
|
def test_shift(self, datetime_frame):
|
|
# naive shift
|
|
ser = datetime_frame["A"]
|
|
|
|
shifted = datetime_frame.shift(5)
|
|
tm.assert_index_equal(shifted.index, datetime_frame.index)
|
|
|
|
shifted_ser = ser.shift(5)
|
|
tm.assert_series_equal(shifted["A"], shifted_ser)
|
|
|
|
shifted = datetime_frame.shift(-5)
|
|
tm.assert_index_equal(shifted.index, datetime_frame.index)
|
|
|
|
shifted_ser = ser.shift(-5)
|
|
tm.assert_series_equal(shifted["A"], shifted_ser)
|
|
|
|
unshifted = datetime_frame.shift(5).shift(-5)
|
|
tm.assert_numpy_array_equal(
|
|
unshifted.dropna().values, datetime_frame.values[:-5]
|
|
)
|
|
|
|
unshifted_ser = ser.shift(5).shift(-5)
|
|
tm.assert_numpy_array_equal(unshifted_ser.dropna().values, ser.values[:-5])
|
|
|
|
def test_shift_by_offset(self, datetime_frame, frame_or_series):
|
|
# shift by DateOffset
|
|
obj = tm.get_obj(datetime_frame, frame_or_series)
|
|
offset = offsets.BDay()
|
|
|
|
shifted = obj.shift(5, freq=offset)
|
|
assert len(shifted) == len(obj)
|
|
unshifted = shifted.shift(-5, freq=offset)
|
|
tm.assert_equal(unshifted, obj)
|
|
|
|
shifted2 = obj.shift(5, freq="B")
|
|
tm.assert_equal(shifted, shifted2)
|
|
|
|
unshifted = obj.shift(0, freq=offset)
|
|
tm.assert_equal(unshifted, obj)
|
|
|
|
d = obj.index[0]
|
|
shifted_d = d + offset * 5
|
|
if frame_or_series is DataFrame:
|
|
tm.assert_series_equal(obj.xs(d), shifted.xs(shifted_d), check_names=False)
|
|
else:
|
|
tm.assert_almost_equal(obj.at[d], shifted.at[shifted_d])
|
|
|
|
def test_shift_with_periodindex(self, frame_or_series):
|
|
# Shifting with PeriodIndex
|
|
ps = tm.makePeriodFrame()
|
|
ps = tm.get_obj(ps, frame_or_series)
|
|
|
|
shifted = ps.shift(1)
|
|
unshifted = shifted.shift(-1)
|
|
tm.assert_index_equal(shifted.index, ps.index)
|
|
tm.assert_index_equal(unshifted.index, ps.index)
|
|
if frame_or_series is DataFrame:
|
|
tm.assert_numpy_array_equal(
|
|
unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values
|
|
)
|
|
else:
|
|
tm.assert_numpy_array_equal(unshifted.dropna().values, ps.values[:-1])
|
|
|
|
shifted2 = ps.shift(1, "B")
|
|
shifted3 = ps.shift(1, offsets.BDay())
|
|
tm.assert_equal(shifted2, shifted3)
|
|
tm.assert_equal(ps, shifted2.shift(-1, "B"))
|
|
|
|
msg = "does not match PeriodIndex freq"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ps.shift(freq="D")
|
|
|
|
# legacy support
|
|
shifted4 = ps.shift(1, freq="B")
|
|
tm.assert_equal(shifted2, shifted4)
|
|
|
|
shifted5 = ps.shift(1, freq=offsets.BDay())
|
|
tm.assert_equal(shifted5, shifted4)
|
|
|
|
def test_shift_other_axis(self):
|
|
# shift other axis
|
|
# GH#6371
|
|
df = DataFrame(np.random.rand(10, 5))
|
|
expected = pd.concat(
|
|
[DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]],
|
|
ignore_index=True,
|
|
axis=1,
|
|
)
|
|
result = df.shift(1, axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_shift_named_axis(self):
|
|
# shift named axis
|
|
df = DataFrame(np.random.rand(10, 5))
|
|
expected = pd.concat(
|
|
[DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]],
|
|
ignore_index=True,
|
|
axis=1,
|
|
)
|
|
result = df.shift(1, axis="columns")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_shift_other_axis_with_freq(self, datetime_frame):
|
|
obj = datetime_frame.T
|
|
offset = offsets.BDay()
|
|
|
|
# GH#47039
|
|
shifted = obj.shift(5, freq=offset, axis=1)
|
|
assert len(shifted) == len(obj)
|
|
unshifted = shifted.shift(-5, freq=offset, axis=1)
|
|
tm.assert_equal(unshifted, obj)
|
|
|
|
def test_shift_bool(self):
|
|
df = DataFrame({"high": [True, False], "low": [False, False]})
|
|
rs = df.shift(1)
|
|
xp = DataFrame(
|
|
np.array([[np.nan, np.nan], [True, False]], dtype=object),
|
|
columns=["high", "low"],
|
|
)
|
|
tm.assert_frame_equal(rs, xp)
|
|
|
|
def test_shift_categorical1(self, frame_or_series):
|
|
# GH#9416
|
|
obj = frame_or_series(["a", "b", "c", "d"], dtype="category")
|
|
|
|
rt = obj.shift(1).shift(-1)
|
|
tm.assert_equal(obj.iloc[:-1], rt.dropna())
|
|
|
|
def get_cat_values(ndframe):
|
|
# For Series we could just do ._values; for DataFrame
|
|
# we may be able to do this if we ever have 2D Categoricals
|
|
return ndframe._mgr.arrays[0]
|
|
|
|
cat = get_cat_values(obj)
|
|
|
|
sp1 = obj.shift(1)
|
|
tm.assert_index_equal(obj.index, sp1.index)
|
|
assert np.all(get_cat_values(sp1).codes[:1] == -1)
|
|
assert np.all(cat.codes[:-1] == get_cat_values(sp1).codes[1:])
|
|
|
|
sn2 = obj.shift(-2)
|
|
tm.assert_index_equal(obj.index, sn2.index)
|
|
assert np.all(get_cat_values(sn2).codes[-2:] == -1)
|
|
assert np.all(cat.codes[2:] == get_cat_values(sn2).codes[:-2])
|
|
|
|
tm.assert_index_equal(cat.categories, get_cat_values(sp1).categories)
|
|
tm.assert_index_equal(cat.categories, get_cat_values(sn2).categories)
|
|
|
|
def test_shift_categorical(self):
|
|
# GH#9416
|
|
s1 = Series(["a", "b", "c"], dtype="category")
|
|
s2 = Series(["A", "B", "C"], dtype="category")
|
|
df = DataFrame({"one": s1, "two": s2})
|
|
rs = df.shift(1)
|
|
xp = DataFrame({"one": s1.shift(1), "two": s2.shift(1)})
|
|
tm.assert_frame_equal(rs, xp)
|
|
|
|
def test_shift_categorical_fill_value(self, frame_or_series):
|
|
ts = frame_or_series(["a", "b", "c", "d"], dtype="category")
|
|
res = ts.shift(1, fill_value="a")
|
|
expected = frame_or_series(
|
|
pd.Categorical(
|
|
["a", "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False
|
|
)
|
|
)
|
|
tm.assert_equal(res, expected)
|
|
|
|
# check for incorrect fill_value
|
|
msg = r"Cannot setitem on a Categorical with a new category \(f\)"
|
|
with pytest.raises(TypeError, match=msg):
|
|
ts.shift(1, fill_value="f")
|
|
|
|
def test_shift_fill_value(self, frame_or_series):
|
|
# GH#24128
|
|
dti = date_range("1/1/2000", periods=5, freq="H")
|
|
|
|
ts = frame_or_series([1.0, 2.0, 3.0, 4.0, 5.0], index=dti)
|
|
exp = frame_or_series([0.0, 1.0, 2.0, 3.0, 4.0], index=dti)
|
|
# check that fill value works
|
|
result = ts.shift(1, fill_value=0.0)
|
|
tm.assert_equal(result, exp)
|
|
|
|
exp = frame_or_series([0.0, 0.0, 1.0, 2.0, 3.0], index=dti)
|
|
result = ts.shift(2, fill_value=0.0)
|
|
tm.assert_equal(result, exp)
|
|
|
|
ts = frame_or_series([1, 2, 3])
|
|
res = ts.shift(2, fill_value=0)
|
|
assert tm.get_dtype(res) == tm.get_dtype(ts)
|
|
|
|
# retain integer dtype
|
|
obj = frame_or_series([1, 2, 3, 4, 5], index=dti)
|
|
exp = frame_or_series([0, 1, 2, 3, 4], index=dti)
|
|
result = obj.shift(1, fill_value=0)
|
|
tm.assert_equal(result, exp)
|
|
|
|
exp = frame_or_series([0, 0, 1, 2, 3], index=dti)
|
|
result = obj.shift(2, fill_value=0)
|
|
tm.assert_equal(result, exp)
|
|
|
|
def test_shift_empty(self):
|
|
# Regression test for GH#8019
|
|
df = DataFrame({"foo": []})
|
|
rs = df.shift(-1)
|
|
|
|
tm.assert_frame_equal(df, rs)
|
|
|
|
def test_shift_duplicate_columns(self):
|
|
# GH#9092; verify that position-based shifting works
|
|
# in the presence of duplicate columns
|
|
column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]]
|
|
data = np.random.randn(20, 5)
|
|
|
|
shifted = []
|
|
for columns in column_lists:
|
|
df = DataFrame(data.copy(), columns=columns)
|
|
for s in range(5):
|
|
df.iloc[:, s] = df.iloc[:, s].shift(s + 1)
|
|
df.columns = range(5)
|
|
shifted.append(df)
|
|
|
|
# sanity check the base case
|
|
nulls = shifted[0].isna().sum()
|
|
tm.assert_series_equal(nulls, Series(range(1, 6), dtype="int64"))
|
|
|
|
# check all answers are the same
|
|
tm.assert_frame_equal(shifted[0], shifted[1])
|
|
tm.assert_frame_equal(shifted[0], shifted[2])
|
|
|
|
def test_shift_axis1_multiple_blocks(self, using_array_manager):
|
|
# GH#35488
|
|
df1 = DataFrame(np.random.randint(1000, size=(5, 3)))
|
|
df2 = DataFrame(np.random.randint(1000, size=(5, 2)))
|
|
df3 = pd.concat([df1, df2], axis=1)
|
|
if not using_array_manager:
|
|
assert len(df3._mgr.blocks) == 2
|
|
|
|
result = df3.shift(2, axis=1)
|
|
|
|
expected = df3.take([-1, -1, 0, 1, 2], axis=1)
|
|
# Explicit cast to float to avoid implicit cast when setting nan.
|
|
# Column names aren't unique, so directly calling `expected.astype` won't work.
|
|
expected = expected.pipe(
|
|
lambda df: df.set_axis(range(df.shape[1]), axis=1)
|
|
.astype({0: "float", 1: "float"})
|
|
.set_axis(df.columns, axis=1)
|
|
)
|
|
expected.iloc[:, :2] = np.nan
|
|
expected.columns = df3.columns
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Case with periods < 0
|
|
# rebuild df3 because `take` call above consolidated
|
|
df3 = pd.concat([df1, df2], axis=1)
|
|
if not using_array_manager:
|
|
assert len(df3._mgr.blocks) == 2
|
|
result = df3.shift(-2, axis=1)
|
|
|
|
expected = df3.take([2, 3, 4, -1, -1], axis=1)
|
|
# Explicit cast to float to avoid implicit cast when setting nan.
|
|
# Column names aren't unique, so directly calling `expected.astype` won't work.
|
|
expected = expected.pipe(
|
|
lambda df: df.set_axis(range(df.shape[1]), axis=1)
|
|
.astype({3: "float", 4: "float"})
|
|
.set_axis(df.columns, axis=1)
|
|
)
|
|
expected.iloc[:, -2:] = np.nan
|
|
expected.columns = df3.columns
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) axis=1 support
|
|
def test_shift_axis1_multiple_blocks_with_int_fill(self):
|
|
# GH#42719
|
|
df1 = DataFrame(np.random.randint(1000, size=(5, 3)))
|
|
df2 = DataFrame(np.random.randint(1000, size=(5, 2)))
|
|
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
|
|
result = df3.shift(2, axis=1, fill_value=np.int_(0))
|
|
assert len(df3._mgr.blocks) == 2
|
|
|
|
expected = df3.take([-1, -1, 0, 1], axis=1)
|
|
expected.iloc[:, :2] = np.int_(0)
|
|
expected.columns = df3.columns
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Case with periods < 0
|
|
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
|
|
result = df3.shift(-2, axis=1, fill_value=np.int_(0))
|
|
assert len(df3._mgr.blocks) == 2
|
|
|
|
expected = df3.take([2, 3, -1, -1], axis=1)
|
|
expected.iloc[:, -2:] = np.int_(0)
|
|
expected.columns = df3.columns
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_period_index_frame_shift_with_freq(self, frame_or_series):
|
|
ps = tm.makePeriodFrame()
|
|
ps = tm.get_obj(ps, frame_or_series)
|
|
|
|
shifted = ps.shift(1, freq="infer")
|
|
unshifted = shifted.shift(-1, freq="infer")
|
|
tm.assert_equal(unshifted, ps)
|
|
|
|
shifted2 = ps.shift(freq="B")
|
|
tm.assert_equal(shifted, shifted2)
|
|
|
|
shifted3 = ps.shift(freq=offsets.BDay())
|
|
tm.assert_equal(shifted, shifted3)
|
|
|
|
def test_datetime_frame_shift_with_freq(self, datetime_frame, frame_or_series):
|
|
dtobj = tm.get_obj(datetime_frame, frame_or_series)
|
|
shifted = dtobj.shift(1, freq="infer")
|
|
unshifted = shifted.shift(-1, freq="infer")
|
|
tm.assert_equal(dtobj, unshifted)
|
|
|
|
shifted2 = dtobj.shift(freq=dtobj.index.freq)
|
|
tm.assert_equal(shifted, shifted2)
|
|
|
|
inferred_ts = DataFrame(
|
|
datetime_frame.values,
|
|
Index(np.asarray(datetime_frame.index)),
|
|
columns=datetime_frame.columns,
|
|
)
|
|
inferred_ts = tm.get_obj(inferred_ts, frame_or_series)
|
|
shifted = inferred_ts.shift(1, freq="infer")
|
|
expected = dtobj.shift(1, freq="infer")
|
|
expected.index = expected.index._with_freq(None)
|
|
tm.assert_equal(shifted, expected)
|
|
|
|
unshifted = shifted.shift(-1, freq="infer")
|
|
tm.assert_equal(unshifted, inferred_ts)
|
|
|
|
def test_period_index_frame_shift_with_freq_error(self, frame_or_series):
|
|
ps = tm.makePeriodFrame()
|
|
ps = tm.get_obj(ps, frame_or_series)
|
|
msg = "Given freq M does not match PeriodIndex freq B"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ps.shift(freq="M")
|
|
|
|
def test_datetime_frame_shift_with_freq_error(
|
|
self, datetime_frame, frame_or_series
|
|
):
|
|
dtobj = tm.get_obj(datetime_frame, frame_or_series)
|
|
no_freq = dtobj.iloc[[0, 5, 7]]
|
|
msg = "Freq was not set in the index hence cannot be inferred"
|
|
with pytest.raises(ValueError, match=msg):
|
|
no_freq.shift(freq="infer")
|
|
|
|
def test_shift_dt64values_int_fill_deprecated(self):
|
|
# GH#31971
|
|
ser = Series([pd.Timestamp("2020-01-01"), pd.Timestamp("2020-01-02")])
|
|
|
|
with pytest.raises(TypeError, match="value should be a"):
|
|
ser.shift(1, fill_value=0)
|
|
|
|
df = ser.to_frame()
|
|
with pytest.raises(TypeError, match="value should be a"):
|
|
df.shift(1, fill_value=0)
|
|
|
|
# axis = 1
|
|
df2 = DataFrame({"A": ser, "B": ser})
|
|
df2._consolidate_inplace()
|
|
|
|
result = df2.shift(1, axis=1, fill_value=0)
|
|
expected = DataFrame({"A": [0, 0], "B": df2["A"]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# same thing but not consolidated; pre-2.0 we got different behavior
|
|
df3 = DataFrame({"A": ser})
|
|
df3["B"] = ser
|
|
assert len(df3._mgr.arrays) == 2
|
|
result = df3.shift(1, axis=1, fill_value=0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"as_cat",
|
|
[
|
|
pytest.param(
|
|
True,
|
|
marks=pytest.mark.xfail(
|
|
reason="_can_hold_element incorrectly always returns True"
|
|
),
|
|
),
|
|
False,
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
date_range("2020-01-01", periods=2),
|
|
date_range("2020-01-01", periods=2, tz="US/Pacific"),
|
|
pd.period_range("2020-01-01", periods=2, freq="D"),
|
|
pd.timedelta_range("2020 Days", periods=2, freq="D"),
|
|
pd.interval_range(0, 3, periods=2),
|
|
pytest.param(
|
|
pd.array([1, 2], dtype="Int64"),
|
|
marks=pytest.mark.xfail(
|
|
reason="_can_hold_element incorrectly always returns True"
|
|
),
|
|
),
|
|
pytest.param(
|
|
pd.array([1, 2], dtype="Float32"),
|
|
marks=pytest.mark.xfail(
|
|
reason="_can_hold_element incorrectly always returns True"
|
|
),
|
|
),
|
|
],
|
|
ids=lambda x: str(x.dtype),
|
|
)
|
|
def test_shift_dt64values_axis1_invalid_fill(self, vals, as_cat):
|
|
# GH#44564
|
|
ser = Series(vals)
|
|
if as_cat:
|
|
ser = ser.astype("category")
|
|
|
|
df = DataFrame({"A": ser})
|
|
result = df.shift(-1, axis=1, fill_value="foo")
|
|
expected = DataFrame({"A": ["foo", "foo"]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# same thing but multiple blocks
|
|
df2 = DataFrame({"A": ser, "B": ser})
|
|
df2._consolidate_inplace()
|
|
|
|
result = df2.shift(-1, axis=1, fill_value="foo")
|
|
expected = DataFrame({"A": df2["B"], "B": ["foo", "foo"]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# same thing but not consolidated
|
|
df3 = DataFrame({"A": ser})
|
|
df3["B"] = ser
|
|
assert len(df3._mgr.arrays) == 2
|
|
result = df3.shift(-1, axis=1, fill_value="foo")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_shift_axis1_categorical_columns(self):
|
|
# GH#38434
|
|
ci = CategoricalIndex(["a", "b", "c"])
|
|
df = DataFrame(
|
|
{"a": [1, 3], "b": [2, 4], "c": [5, 6]}, index=ci[:-1], columns=ci
|
|
)
|
|
result = df.shift(axis=1)
|
|
|
|
expected = DataFrame(
|
|
{"a": [np.nan, np.nan], "b": [1, 3], "c": [2, 4]}, index=ci[:-1], columns=ci
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# periods != 1
|
|
result = df.shift(2, axis=1)
|
|
expected = DataFrame(
|
|
{"a": [np.nan, np.nan], "b": [np.nan, np.nan], "c": [1, 3]},
|
|
index=ci[:-1],
|
|
columns=ci,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_shift_axis1_many_periods(self):
|
|
# GH#44978 periods > len(columns)
|
|
df = DataFrame(np.random.rand(5, 3))
|
|
shifted = df.shift(6, axis=1, fill_value=None)
|
|
|
|
expected = df * np.nan
|
|
tm.assert_frame_equal(shifted, expected)
|
|
|
|
shifted2 = df.shift(-6, axis=1, fill_value=None)
|
|
tm.assert_frame_equal(shifted2, expected)
|