1309 lines
47 KiB
Python
1309 lines
47 KiB
Python
import csv
|
||
from io import StringIO
|
||
import os
|
||
|
||
import numpy as np
|
||
import pytest
|
||
|
||
from pandas.errors import ParserError
|
||
|
||
import pandas as pd
|
||
from pandas import (
|
||
DataFrame,
|
||
Index,
|
||
MultiIndex,
|
||
NaT,
|
||
Series,
|
||
Timestamp,
|
||
date_range,
|
||
read_csv,
|
||
to_datetime,
|
||
)
|
||
import pandas._testing as tm
|
||
import pandas.core.common as com
|
||
|
||
from pandas.io.common import get_handle
|
||
|
||
|
||
class TestDataFrameToCSV:
|
||
def read_csv(self, path, **kwargs):
|
||
params = {"index_col": 0}
|
||
params.update(**kwargs)
|
||
|
||
return read_csv(path, **params)
|
||
|
||
def test_to_csv_from_csv1(self, float_frame, datetime_frame):
|
||
with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path:
|
||
float_frame.iloc[:5, float_frame.columns.get_loc("A")] = np.nan
|
||
|
||
float_frame.to_csv(path)
|
||
float_frame.to_csv(path, columns=["A", "B"])
|
||
float_frame.to_csv(path, header=False)
|
||
float_frame.to_csv(path, index=False)
|
||
|
||
# test roundtrip
|
||
# freq does not roundtrip
|
||
datetime_frame.index = datetime_frame.index._with_freq(None)
|
||
datetime_frame.to_csv(path)
|
||
recons = self.read_csv(path, parse_dates=True)
|
||
tm.assert_frame_equal(datetime_frame, recons)
|
||
|
||
datetime_frame.to_csv(path, index_label="index")
|
||
recons = self.read_csv(path, index_col=None, parse_dates=True)
|
||
|
||
assert len(recons.columns) == len(datetime_frame.columns) + 1
|
||
|
||
# no index
|
||
datetime_frame.to_csv(path, index=False)
|
||
recons = self.read_csv(path, index_col=None, parse_dates=True)
|
||
tm.assert_almost_equal(datetime_frame.values, recons.values)
|
||
|
||
# corner case
|
||
dm = DataFrame(
|
||
{
|
||
"s1": Series(range(3), index=np.arange(3, dtype=np.int64)),
|
||
"s2": Series(range(2), index=np.arange(2, dtype=np.int64)),
|
||
}
|
||
)
|
||
dm.to_csv(path)
|
||
|
||
recons = self.read_csv(path)
|
||
tm.assert_frame_equal(dm, recons)
|
||
|
||
def test_to_csv_from_csv2(self, float_frame):
|
||
with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path:
|
||
# duplicate index
|
||
df = DataFrame(
|
||
np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"]
|
||
)
|
||
df.to_csv(path)
|
||
result = self.read_csv(path)
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)])
|
||
df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"])
|
||
|
||
df.to_csv(path)
|
||
result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False)
|
||
tm.assert_frame_equal(result, df, check_names=False)
|
||
|
||
# column aliases
|
||
col_aliases = Index(["AA", "X", "Y", "Z"])
|
||
float_frame.to_csv(path, header=col_aliases)
|
||
|
||
rs = self.read_csv(path)
|
||
xp = float_frame.copy()
|
||
xp.columns = col_aliases
|
||
tm.assert_frame_equal(xp, rs)
|
||
|
||
msg = "Writing 4 cols but got 2 aliases"
|
||
with pytest.raises(ValueError, match=msg):
|
||
float_frame.to_csv(path, header=["AA", "X"])
|
||
|
||
def test_to_csv_from_csv3(self):
|
||
with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path:
|
||
df1 = DataFrame(np.random.randn(3, 1))
|
||
df2 = DataFrame(np.random.randn(3, 1))
|
||
|
||
df1.to_csv(path)
|
||
df2.to_csv(path, mode="a", header=False)
|
||
xp = pd.concat([df1, df2])
|
||
rs = read_csv(path, index_col=0)
|
||
rs.columns = [int(label) for label in rs.columns]
|
||
xp.columns = [int(label) for label in xp.columns]
|
||
tm.assert_frame_equal(xp, rs)
|
||
|
||
def test_to_csv_from_csv4(self):
|
||
with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path:
|
||
# GH 10833 (TimedeltaIndex formatting)
|
||
dt = pd.Timedelta(seconds=1)
|
||
df = DataFrame(
|
||
{"dt_data": [i * dt for i in range(3)]},
|
||
index=Index([i * dt for i in range(3)], name="dt_index"),
|
||
)
|
||
df.to_csv(path)
|
||
|
||
result = read_csv(path, index_col="dt_index")
|
||
result.index = pd.to_timedelta(result.index)
|
||
result["dt_data"] = pd.to_timedelta(result["dt_data"])
|
||
|
||
tm.assert_frame_equal(df, result, check_index_type=True)
|
||
|
||
def test_to_csv_from_csv5(self, timezone_frame):
|
||
# tz, 8260
|
||
with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path:
|
||
timezone_frame.to_csv(path)
|
||
result = read_csv(path, index_col=0, parse_dates=["A"])
|
||
|
||
converter = (
|
||
lambda c: to_datetime(result[c])
|
||
.dt.tz_convert("UTC")
|
||
.dt.tz_convert(timezone_frame[c].dt.tz)
|
||
)
|
||
result["B"] = converter("B")
|
||
result["C"] = converter("C")
|
||
tm.assert_frame_equal(result, timezone_frame)
|
||
|
||
def test_to_csv_cols_reordering(self):
|
||
# GH3454
|
||
chunksize = 5
|
||
N = int(chunksize * 2.5)
|
||
|
||
df = tm.makeCustomDataframe(N, 3)
|
||
cs = df.columns
|
||
cols = [cs[2], cs[0]]
|
||
|
||
with tm.ensure_clean() as path:
|
||
df.to_csv(path, columns=cols, chunksize=chunksize)
|
||
rs_c = read_csv(path, index_col=0)
|
||
|
||
tm.assert_frame_equal(df[cols], rs_c, check_names=False)
|
||
|
||
@pytest.mark.parametrize("cols", [None, ["b", "a"]])
|
||
def test_to_csv_new_dupe_cols(self, cols):
|
||
chunksize = 5
|
||
N = int(chunksize * 2.5)
|
||
|
||
# dupe cols
|
||
df = tm.makeCustomDataframe(N, 3)
|
||
df.columns = ["a", "a", "b"]
|
||
with tm.ensure_clean() as path:
|
||
df.to_csv(path, columns=cols, chunksize=chunksize)
|
||
rs_c = read_csv(path, index_col=0)
|
||
|
||
# we wrote them in a different order
|
||
# so compare them in that order
|
||
if cols is not None:
|
||
if df.columns.is_unique:
|
||
rs_c.columns = cols
|
||
else:
|
||
indexer, missing = df.columns.get_indexer_non_unique(cols)
|
||
rs_c.columns = df.columns.take(indexer)
|
||
|
||
for c in cols:
|
||
obj_df = df[c]
|
||
obj_rs = rs_c[c]
|
||
if isinstance(obj_df, Series):
|
||
tm.assert_series_equal(obj_df, obj_rs)
|
||
else:
|
||
tm.assert_frame_equal(obj_df, obj_rs, check_names=False)
|
||
|
||
# wrote in the same order
|
||
else:
|
||
rs_c.columns = df.columns
|
||
tm.assert_frame_equal(df, rs_c, check_names=False)
|
||
|
||
@pytest.mark.slow
|
||
def test_to_csv_dtnat(self):
|
||
# GH3437
|
||
def make_dtnat_arr(n, nnat=None):
|
||
if nnat is None:
|
||
nnat = int(n * 0.1) # 10%
|
||
s = list(date_range("2000", freq="5min", periods=n))
|
||
if nnat:
|
||
for i in np.random.randint(0, len(s), nnat):
|
||
s[i] = NaT
|
||
i = np.random.randint(100)
|
||
s[-i] = NaT
|
||
s[i] = NaT
|
||
return s
|
||
|
||
chunksize = 1000
|
||
s1 = make_dtnat_arr(chunksize + 5)
|
||
s2 = make_dtnat_arr(chunksize + 5, 0)
|
||
|
||
with tm.ensure_clean("1.csv") as pth:
|
||
df = DataFrame({"a": s1, "b": s2})
|
||
df.to_csv(pth, chunksize=chunksize)
|
||
|
||
recons = self.read_csv(pth).apply(to_datetime)
|
||
tm.assert_frame_equal(df, recons, check_names=False)
|
||
|
||
def _return_result_expected(
|
||
self,
|
||
df,
|
||
chunksize,
|
||
r_dtype=None,
|
||
c_dtype=None,
|
||
rnlvl=None,
|
||
cnlvl=None,
|
||
dupe_col=False,
|
||
):
|
||
kwargs = {"parse_dates": False}
|
||
if cnlvl:
|
||
if rnlvl is not None:
|
||
kwargs["index_col"] = list(range(rnlvl))
|
||
kwargs["header"] = list(range(cnlvl))
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_moar__") as path:
|
||
df.to_csv(path, encoding="utf8", chunksize=chunksize)
|
||
recons = self.read_csv(path, **kwargs)
|
||
else:
|
||
kwargs["header"] = 0
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_moar__") as path:
|
||
df.to_csv(path, encoding="utf8", chunksize=chunksize)
|
||
recons = self.read_csv(path, **kwargs)
|
||
|
||
def _to_uni(x):
|
||
if not isinstance(x, str):
|
||
return x.decode("utf8")
|
||
return x
|
||
|
||
if dupe_col:
|
||
# read_Csv disambiguates the columns by
|
||
# labeling them dupe.1,dupe.2, etc'. monkey patch columns
|
||
recons.columns = df.columns
|
||
if rnlvl and not cnlvl:
|
||
delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)]
|
||
ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl)
|
||
recons.index = ix
|
||
recons = recons.iloc[:, rnlvl - 1 :]
|
||
|
||
type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"}
|
||
if r_dtype:
|
||
if r_dtype == "u": # unicode
|
||
r_dtype = "O"
|
||
recons.index = np.array(
|
||
[_to_uni(label) for label in recons.index], dtype=r_dtype
|
||
)
|
||
df.index = np.array(
|
||
[_to_uni(label) for label in df.index], dtype=r_dtype
|
||
)
|
||
elif r_dtype == "dt": # unicode
|
||
r_dtype = "O"
|
||
recons.index = np.array(
|
||
[Timestamp(label) for label in recons.index], dtype=r_dtype
|
||
)
|
||
df.index = np.array(
|
||
[Timestamp(label) for label in df.index], dtype=r_dtype
|
||
)
|
||
elif r_dtype == "p":
|
||
r_dtype = "O"
|
||
idx_list = to_datetime(recons.index)
|
||
recons.index = np.array(
|
||
[Timestamp(label) for label in idx_list], dtype=r_dtype
|
||
)
|
||
df.index = np.array(
|
||
list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype
|
||
)
|
||
else:
|
||
r_dtype = type_map.get(r_dtype)
|
||
recons.index = np.array(recons.index, dtype=r_dtype)
|
||
df.index = np.array(df.index, dtype=r_dtype)
|
||
if c_dtype:
|
||
if c_dtype == "u":
|
||
c_dtype = "O"
|
||
recons.columns = np.array(
|
||
[_to_uni(label) for label in recons.columns], dtype=c_dtype
|
||
)
|
||
df.columns = np.array(
|
||
[_to_uni(label) for label in df.columns], dtype=c_dtype
|
||
)
|
||
elif c_dtype == "dt":
|
||
c_dtype = "O"
|
||
recons.columns = np.array(
|
||
[Timestamp(label) for label in recons.columns], dtype=c_dtype
|
||
)
|
||
df.columns = np.array(
|
||
[Timestamp(label) for label in df.columns], dtype=c_dtype
|
||
)
|
||
elif c_dtype == "p":
|
||
c_dtype = "O"
|
||
col_list = to_datetime(recons.columns)
|
||
recons.columns = np.array(
|
||
[Timestamp(label) for label in col_list], dtype=c_dtype
|
||
)
|
||
col_list = df.columns.to_timestamp()
|
||
df.columns = np.array(
|
||
[Timestamp(label) for label in col_list], dtype=c_dtype
|
||
)
|
||
else:
|
||
c_dtype = type_map.get(c_dtype)
|
||
recons.columns = np.array(recons.columns, dtype=c_dtype)
|
||
df.columns = np.array(df.columns, dtype=c_dtype)
|
||
return df, recons
|
||
|
||
@pytest.mark.slow
|
||
@pytest.mark.parametrize(
|
||
"nrows", [2, 10, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
|
||
)
|
||
def test_to_csv_nrows(self, nrows):
|
||
df = tm.makeCustomDataframe(nrows, 4, r_idx_type="dt", c_idx_type="s")
|
||
result, expected = self._return_result_expected(df, 1000, "dt", "s")
|
||
tm.assert_frame_equal(result, expected, check_names=False)
|
||
|
||
@pytest.mark.slow
|
||
@pytest.mark.parametrize(
|
||
"nrows", [2, 10, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
|
||
)
|
||
@pytest.mark.parametrize(
|
||
"r_idx_type, c_idx_type", [("i", "i"), ("s", "s"), ("s", "dt"), ("p", "p")]
|
||
)
|
||
@pytest.mark.parametrize("ncols", [1, 2, 3, 4])
|
||
def test_to_csv_idx_types(self, nrows, r_idx_type, c_idx_type, ncols):
|
||
df = tm.makeCustomDataframe(
|
||
nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type
|
||
)
|
||
result, expected = self._return_result_expected(
|
||
df,
|
||
1000,
|
||
r_idx_type,
|
||
c_idx_type,
|
||
)
|
||
tm.assert_frame_equal(result, expected, check_names=False)
|
||
|
||
@pytest.mark.slow
|
||
@pytest.mark.parametrize(
|
||
"nrows", [10, 98, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
|
||
)
|
||
@pytest.mark.parametrize("ncols", [1, 2, 3, 4])
|
||
def test_to_csv_idx_ncols(self, nrows, ncols):
|
||
df = tm.makeCustomDataframe(nrows, ncols)
|
||
result, expected = self._return_result_expected(df, 1000)
|
||
tm.assert_frame_equal(result, expected, check_names=False)
|
||
|
||
@pytest.mark.slow
|
||
@pytest.mark.parametrize("nrows", [10, 98, 99, 100, 101, 102])
|
||
def test_to_csv_dup_cols(self, nrows):
|
||
df = tm.makeCustomDataframe(nrows, 3)
|
||
cols = list(df.columns)
|
||
cols[:2] = ["dupe", "dupe"]
|
||
cols[-2:] = ["dupe", "dupe"]
|
||
ix = list(df.index)
|
||
ix[:2] = ["rdupe", "rdupe"]
|
||
ix[-2:] = ["rdupe", "rdupe"]
|
||
df.index = ix
|
||
df.columns = cols
|
||
result, expected = self._return_result_expected(df, 1000, dupe_col=True)
|
||
tm.assert_frame_equal(result, expected, check_names=False)
|
||
|
||
@pytest.mark.slow
|
||
def test_to_csv_empty(self):
|
||
df = DataFrame(index=np.arange(10, dtype=np.int64))
|
||
result, expected = self._return_result_expected(df, 1000)
|
||
tm.assert_frame_equal(result, expected, check_column_type=False)
|
||
|
||
@pytest.mark.slow
|
||
def test_to_csv_chunksize(self):
|
||
chunksize = 1000
|
||
df = tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2)
|
||
result, expected = self._return_result_expected(df, chunksize, rnlvl=2)
|
||
tm.assert_frame_equal(result, expected, check_names=False)
|
||
|
||
@pytest.mark.slow
|
||
@pytest.mark.parametrize(
|
||
"nrows", [2, 10, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
|
||
)
|
||
@pytest.mark.parametrize("ncols", [2, 3, 4])
|
||
@pytest.mark.parametrize(
|
||
"df_params, func_params",
|
||
[
|
||
[{"r_idx_nlevels": 2}, {"rnlvl": 2}],
|
||
[{"c_idx_nlevels": 2}, {"cnlvl": 2}],
|
||
[{"r_idx_nlevels": 2, "c_idx_nlevels": 2}, {"rnlvl": 2, "cnlvl": 2}],
|
||
],
|
||
)
|
||
def test_to_csv_params(self, nrows, df_params, func_params, ncols):
|
||
df = tm.makeCustomDataframe(nrows, ncols, **df_params)
|
||
result, expected = self._return_result_expected(df, 1000, **func_params)
|
||
tm.assert_frame_equal(result, expected, check_names=False)
|
||
|
||
def test_to_csv_from_csv_w_some_infs(self, float_frame):
|
||
# test roundtrip with inf, -inf, nan, as full columns and mix
|
||
float_frame["G"] = np.nan
|
||
f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5]
|
||
float_frame["H"] = float_frame.index.map(f)
|
||
|
||
with tm.ensure_clean() as path:
|
||
float_frame.to_csv(path)
|
||
recons = self.read_csv(path)
|
||
|
||
tm.assert_frame_equal(float_frame, recons)
|
||
tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons))
|
||
|
||
def test_to_csv_from_csv_w_all_infs(self, float_frame):
|
||
# test roundtrip with inf, -inf, nan, as full columns and mix
|
||
float_frame["E"] = np.inf
|
||
float_frame["F"] = -np.inf
|
||
|
||
with tm.ensure_clean() as path:
|
||
float_frame.to_csv(path)
|
||
recons = self.read_csv(path)
|
||
|
||
tm.assert_frame_equal(float_frame, recons)
|
||
tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons))
|
||
|
||
def test_to_csv_no_index(self):
|
||
# GH 3624, after appending columns, to_csv fails
|
||
with tm.ensure_clean("__tmp_to_csv_no_index__") as path:
|
||
df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]})
|
||
df.to_csv(path, index=False)
|
||
result = read_csv(path)
|
||
tm.assert_frame_equal(df, result)
|
||
df["c3"] = Series([7, 8, 9], dtype="int64")
|
||
df.to_csv(path, index=False)
|
||
result = read_csv(path)
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
def test_to_csv_with_mix_columns(self):
|
||
# gh-11637: incorrect output when a mix of integer and string column
|
||
# names passed as columns parameter in to_csv
|
||
|
||
df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]})
|
||
df["test"] = "txt"
|
||
assert df.to_csv() == df.to_csv(columns=[0, 1, "test"])
|
||
|
||
def test_to_csv_headers(self):
|
||
# GH6186, the presence or absence of `index` incorrectly
|
||
# causes to_csv to have different header semantics.
|
||
from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
|
||
to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"])
|
||
with tm.ensure_clean("__tmp_to_csv_headers__") as path:
|
||
from_df.to_csv(path, header=["X", "Y"])
|
||
recons = self.read_csv(path)
|
||
|
||
tm.assert_frame_equal(to_df, recons)
|
||
|
||
from_df.to_csv(path, index=False, header=["X", "Y"])
|
||
recons = self.read_csv(path)
|
||
|
||
return_value = recons.reset_index(inplace=True)
|
||
assert return_value is None
|
||
tm.assert_frame_equal(to_df, recons)
|
||
|
||
def test_to_csv_multiindex(self, float_frame, datetime_frame):
|
||
frame = float_frame
|
||
old_index = frame.index
|
||
arrays = np.arange(len(old_index) * 2, dtype=np.int64).reshape(2, -1)
|
||
new_index = MultiIndex.from_arrays(arrays, names=["first", "second"])
|
||
frame.index = new_index
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_multiindex__") as path:
|
||
frame.to_csv(path, header=False)
|
||
frame.to_csv(path, columns=["A", "B"])
|
||
|
||
# round trip
|
||
frame.to_csv(path)
|
||
|
||
df = self.read_csv(path, index_col=[0, 1], parse_dates=False)
|
||
|
||
# TODO to_csv drops column name
|
||
tm.assert_frame_equal(frame, df, check_names=False)
|
||
assert frame.index.names == df.index.names
|
||
|
||
# needed if setUp becomes a class method
|
||
float_frame.index = old_index
|
||
|
||
# try multiindex with dates
|
||
tsframe = datetime_frame
|
||
old_index = tsframe.index
|
||
new_index = [old_index, np.arange(len(old_index), dtype=np.int64)]
|
||
tsframe.index = MultiIndex.from_arrays(new_index)
|
||
|
||
tsframe.to_csv(path, index_label=["time", "foo"])
|
||
with tm.assert_produces_warning(
|
||
UserWarning, match="Could not infer format"
|
||
):
|
||
recons = self.read_csv(path, index_col=[0, 1], parse_dates=True)
|
||
|
||
# TODO to_csv drops column name
|
||
tm.assert_frame_equal(tsframe, recons, check_names=False)
|
||
|
||
# do not load index
|
||
tsframe.to_csv(path)
|
||
recons = self.read_csv(path, index_col=None)
|
||
assert len(recons.columns) == len(tsframe.columns) + 2
|
||
|
||
# no index
|
||
tsframe.to_csv(path, index=False)
|
||
recons = self.read_csv(path, index_col=None)
|
||
tm.assert_almost_equal(recons.values, datetime_frame.values)
|
||
|
||
# needed if setUp becomes class method
|
||
datetime_frame.index = old_index
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_multiindex__") as path:
|
||
# GH3571, GH1651, GH3141
|
||
|
||
def _make_frame(names=None):
|
||
if names is True:
|
||
names = ["first", "second"]
|
||
return DataFrame(
|
||
np.random.randint(0, 10, size=(3, 3)),
|
||
columns=MultiIndex.from_tuples(
|
||
[("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names
|
||
),
|
||
dtype="int64",
|
||
)
|
||
|
||
# column & index are multi-index
|
||
df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)
|
||
df.to_csv(path)
|
||
result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1])
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# column is mi
|
||
df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4)
|
||
df.to_csv(path)
|
||
result = read_csv(path, header=[0, 1, 2, 3], index_col=0)
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# dup column names?
|
||
df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4)
|
||
df.to_csv(path)
|
||
result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2])
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# writing with no index
|
||
df = _make_frame()
|
||
df.to_csv(path, index=False)
|
||
result = read_csv(path, header=[0, 1])
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# we lose the names here
|
||
df = _make_frame(True)
|
||
df.to_csv(path, index=False)
|
||
result = read_csv(path, header=[0, 1])
|
||
assert com.all_none(*result.columns.names)
|
||
result.columns.names = df.columns.names
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# whatsnew example
|
||
df = _make_frame()
|
||
df.to_csv(path)
|
||
result = read_csv(path, header=[0, 1], index_col=[0])
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
df = _make_frame(True)
|
||
df.to_csv(path)
|
||
result = read_csv(path, header=[0, 1], index_col=[0])
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# invalid options
|
||
df = _make_frame(True)
|
||
df.to_csv(path)
|
||
|
||
for i in [6, 7]:
|
||
msg = f"len of {i}, but only 5 lines in file"
|
||
with pytest.raises(ParserError, match=msg):
|
||
read_csv(path, header=list(range(i)), index_col=0)
|
||
|
||
# write with cols
|
||
msg = "cannot specify cols with a MultiIndex"
|
||
with pytest.raises(TypeError, match=msg):
|
||
df.to_csv(path, columns=["foo", "bar"])
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_multiindex__") as path:
|
||
# empty
|
||
tsframe[:0].to_csv(path)
|
||
recons = self.read_csv(path)
|
||
|
||
exp = tsframe[:0]
|
||
exp.index = []
|
||
|
||
tm.assert_index_equal(recons.columns, exp.columns)
|
||
assert len(recons) == 0
|
||
|
||
def test_to_csv_interval_index(self):
|
||
# GH 28210
|
||
df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3))
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path:
|
||
df.to_csv(path)
|
||
result = self.read_csv(path, index_col=0)
|
||
|
||
# can't roundtrip intervalindex via read_csv so check string repr (GH 23595)
|
||
expected = df.copy()
|
||
expected.index = expected.index.astype(str)
|
||
|
||
tm.assert_frame_equal(result, expected)
|
||
|
||
def test_to_csv_float32_nanrep(self):
|
||
df = DataFrame(np.random.randn(1, 4).astype(np.float32))
|
||
df[1] = np.nan
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path:
|
||
df.to_csv(path, na_rep=999)
|
||
|
||
with open(path) as f:
|
||
lines = f.readlines()
|
||
assert lines[1].split(",")[2] == "999"
|
||
|
||
def test_to_csv_withcommas(self):
|
||
# Commas inside fields should be correctly escaped when saving as CSV.
|
||
df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]})
|
||
|
||
with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path:
|
||
df.to_csv(path)
|
||
df2 = self.read_csv(path)
|
||
tm.assert_frame_equal(df2, df)
|
||
|
||
def test_to_csv_mixed(self):
|
||
def create_cols(name):
|
||
return [f"{name}{i:03d}" for i in range(5)]
|
||
|
||
df_float = DataFrame(
|
||
np.random.randn(100, 5), dtype="float64", columns=create_cols("float")
|
||
)
|
||
df_int = DataFrame(
|
||
np.random.randn(100, 5).astype("int64"),
|
||
dtype="int64",
|
||
columns=create_cols("int"),
|
||
)
|
||
df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool"))
|
||
df_object = DataFrame(
|
||
"foo", index=df_float.index, columns=create_cols("object")
|
||
)
|
||
df_dt = DataFrame(
|
||
Timestamp("20010101"), index=df_float.index, columns=create_cols("date")
|
||
)
|
||
|
||
# add in some nans
|
||
df_float.iloc[30:50, 1:3] = np.nan
|
||
|
||
# ## this is a bug in read_csv right now ####
|
||
# df_dt.loc[30:50,1:3] = np.nan
|
||
|
||
df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
|
||
|
||
# dtype
|
||
dtypes = {}
|
||
for n, dtype in [
|
||
("float", np.float64),
|
||
("int", np.int64),
|
||
("bool", np.bool_),
|
||
("object", object),
|
||
]:
|
||
for c in create_cols(n):
|
||
dtypes[c] = dtype
|
||
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename)
|
||
rs = read_csv(
|
||
filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date")
|
||
)
|
||
tm.assert_frame_equal(rs, df)
|
||
|
||
def test_to_csv_dups_cols(self):
|
||
df = DataFrame(
|
||
np.random.randn(1000, 30),
|
||
columns=list(range(15)) + list(range(15)),
|
||
dtype="float64",
|
||
)
|
||
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename) # single dtype, fine
|
||
result = read_csv(filename, index_col=0)
|
||
result.columns = df.columns
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
df_float = DataFrame(np.random.randn(1000, 3), dtype="float64")
|
||
df_int = DataFrame(np.random.randn(1000, 3)).astype("int64")
|
||
df_bool = DataFrame(True, index=df_float.index, columns=range(3))
|
||
df_object = DataFrame("foo", index=df_float.index, columns=range(3))
|
||
df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3))
|
||
df = pd.concat(
|
||
[df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True
|
||
)
|
||
|
||
df.columns = [0, 1, 2] * 5
|
||
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename)
|
||
result = read_csv(filename, index_col=0)
|
||
|
||
# date cols
|
||
for i in ["0.4", "1.4", "2.4"]:
|
||
result[i] = to_datetime(result[i])
|
||
|
||
result.columns = df.columns
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
# GH3457
|
||
|
||
N = 10
|
||
df = tm.makeCustomDataframe(N, 3)
|
||
df.columns = ["a", "a", "b"]
|
||
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename)
|
||
|
||
# read_csv will rename the dups columns
|
||
result = read_csv(filename, index_col=0)
|
||
result = result.rename(columns={"a.1": "a"})
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
@pytest.mark.parametrize("chunksize", [10000, 50000, 100000])
|
||
def test_to_csv_chunking(self, chunksize):
|
||
aa = DataFrame({"A": range(100000)})
|
||
aa["B"] = aa.A + 1.0
|
||
aa["C"] = aa.A + 2.0
|
||
aa["D"] = aa.A + 3.0
|
||
|
||
with tm.ensure_clean() as filename:
|
||
aa.to_csv(filename, chunksize=chunksize)
|
||
rs = read_csv(filename, index_col=0)
|
||
tm.assert_frame_equal(rs, aa)
|
||
|
||
@pytest.mark.slow
|
||
def test_to_csv_wide_frame_formatting(self):
|
||
# Issue #8621
|
||
df = DataFrame(np.random.randn(1, 100010), columns=None, index=None)
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename, header=False, index=False)
|
||
rs = read_csv(filename, header=None)
|
||
tm.assert_frame_equal(rs, df)
|
||
|
||
def test_to_csv_bug(self):
|
||
f1 = StringIO("a,1.0\nb,2.0")
|
||
df = self.read_csv(f1, header=None)
|
||
newdf = DataFrame({"t": df[df.columns[0]]})
|
||
|
||
with tm.ensure_clean() as path:
|
||
newdf.to_csv(path)
|
||
|
||
recons = read_csv(path, index_col=0)
|
||
# don't check_names as t != 1
|
||
tm.assert_frame_equal(recons, newdf, check_names=False)
|
||
|
||
def test_to_csv_unicode(self):
|
||
df = DataFrame({"c/\u03c3": [1, 2, 3]})
|
||
with tm.ensure_clean() as path:
|
||
df.to_csv(path, encoding="UTF-8")
|
||
df2 = read_csv(path, index_col=0, encoding="UTF-8")
|
||
tm.assert_frame_equal(df, df2)
|
||
|
||
df.to_csv(path, encoding="UTF-8", index=False)
|
||
df2 = read_csv(path, index_col=None, encoding="UTF-8")
|
||
tm.assert_frame_equal(df, df2)
|
||
|
||
def test_to_csv_unicode_index_col(self):
|
||
buf = StringIO("")
|
||
df = DataFrame(
|
||
[["\u05d0", "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]],
|
||
columns=["\u05d0", "\u05d1", "\u05d2", "\u05d3"],
|
||
index=["\u05d0", "\u05d1"],
|
||
)
|
||
|
||
df.to_csv(buf, encoding="UTF-8")
|
||
buf.seek(0)
|
||
|
||
df2 = read_csv(buf, index_col=0, encoding="UTF-8")
|
||
tm.assert_frame_equal(df, df2)
|
||
|
||
def test_to_csv_stringio(self, float_frame):
|
||
buf = StringIO()
|
||
float_frame.to_csv(buf)
|
||
buf.seek(0)
|
||
recons = read_csv(buf, index_col=0)
|
||
tm.assert_frame_equal(recons, float_frame)
|
||
|
||
def test_to_csv_float_format(self):
|
||
df = DataFrame(
|
||
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
|
||
index=["A", "B"],
|
||
columns=["X", "Y", "Z"],
|
||
)
|
||
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename, float_format="%.2f")
|
||
|
||
rs = read_csv(filename, index_col=0)
|
||
xp = DataFrame(
|
||
[[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]],
|
||
index=["A", "B"],
|
||
columns=["X", "Y", "Z"],
|
||
)
|
||
tm.assert_frame_equal(rs, xp)
|
||
|
||
def test_to_csv_float_format_over_decimal(self):
|
||
# GH#47436
|
||
df = DataFrame({"a": [0.5, 1.0]})
|
||
result = df.to_csv(
|
||
decimal=",",
|
||
float_format=lambda x: np.format_float_positional(x, trim="-"),
|
||
index=False,
|
||
)
|
||
expected_rows = ["a", "0.5", "1"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
def test_to_csv_unicodewriter_quoting(self):
|
||
df = DataFrame({"A": [1, 2, 3], "B": ["foo", "bar", "baz"]})
|
||
|
||
buf = StringIO()
|
||
df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding="utf-8")
|
||
|
||
result = buf.getvalue()
|
||
expected_rows = ['"A","B"', '1,"foo"', '2,"bar"', '3,"baz"']
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
@pytest.mark.parametrize("encoding", [None, "utf-8"])
|
||
def test_to_csv_quote_none(self, encoding):
|
||
# GH4328
|
||
df = DataFrame({"A": ["hello", '{"hello"}']})
|
||
buf = StringIO()
|
||
df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False)
|
||
|
||
result = buf.getvalue()
|
||
expected_rows = ["A", "hello", '{"hello"}']
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
def test_to_csv_index_no_leading_comma(self):
|
||
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"])
|
||
|
||
buf = StringIO()
|
||
df.to_csv(buf, index_label=False)
|
||
|
||
expected_rows = ["A,B", "one,1,4", "two,2,5", "three,3,6"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert buf.getvalue() == expected
|
||
|
||
def test_to_csv_lineterminators(self):
|
||
# see gh-20353
|
||
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"])
|
||
|
||
with tm.ensure_clean() as path:
|
||
# case 1: CRLF as line terminator
|
||
df.to_csv(path, lineterminator="\r\n")
|
||
expected = b",A,B\r\none,1,4\r\ntwo,2,5\r\nthree,3,6\r\n"
|
||
|
||
with open(path, mode="rb") as f:
|
||
assert f.read() == expected
|
||
|
||
with tm.ensure_clean() as path:
|
||
# case 2: LF as line terminator
|
||
df.to_csv(path, lineterminator="\n")
|
||
expected = b",A,B\none,1,4\ntwo,2,5\nthree,3,6\n"
|
||
|
||
with open(path, mode="rb") as f:
|
||
assert f.read() == expected
|
||
|
||
with tm.ensure_clean() as path:
|
||
# case 3: The default line terminator(=os.linesep)(gh-21406)
|
||
df.to_csv(path)
|
||
os_linesep = os.linesep.encode("utf-8")
|
||
expected = (
|
||
b",A,B"
|
||
+ os_linesep
|
||
+ b"one,1,4"
|
||
+ os_linesep
|
||
+ b"two,2,5"
|
||
+ os_linesep
|
||
+ b"three,3,6"
|
||
+ os_linesep
|
||
)
|
||
|
||
with open(path, mode="rb") as f:
|
||
assert f.read() == expected
|
||
|
||
def test_to_csv_from_csv_categorical(self):
|
||
# CSV with categoricals should result in the same output
|
||
# as when one would add a "normal" Series/DataFrame.
|
||
s = Series(pd.Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]))
|
||
s2 = Series(["a", "b", "b", "a", "a", "c", "c", "c"])
|
||
res = StringIO()
|
||
|
||
s.to_csv(res, header=False)
|
||
exp = StringIO()
|
||
|
||
s2.to_csv(exp, header=False)
|
||
assert res.getvalue() == exp.getvalue()
|
||
|
||
df = DataFrame({"s": s})
|
||
df2 = DataFrame({"s": s2})
|
||
|
||
res = StringIO()
|
||
df.to_csv(res)
|
||
|
||
exp = StringIO()
|
||
df2.to_csv(exp)
|
||
|
||
assert res.getvalue() == exp.getvalue()
|
||
|
||
def test_to_csv_path_is_none(self, float_frame):
|
||
# GH 8215
|
||
# Make sure we return string for consistency with
|
||
# Series.to_csv()
|
||
csv_str = float_frame.to_csv(path_or_buf=None)
|
||
assert isinstance(csv_str, str)
|
||
recons = read_csv(StringIO(csv_str), index_col=0)
|
||
tm.assert_frame_equal(float_frame, recons)
|
||
|
||
@pytest.mark.parametrize(
|
||
"df,encoding",
|
||
[
|
||
(
|
||
DataFrame(
|
||
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
|
||
index=["A", "B"],
|
||
columns=["X", "Y", "Z"],
|
||
),
|
||
None,
|
||
),
|
||
# GH 21241, 21118
|
||
(DataFrame([["abc", "def", "ghi"]], columns=["X", "Y", "Z"]), "ascii"),
|
||
(DataFrame(5 * [[123, "你好", "世界"]], columns=["X", "Y", "Z"]), "gb2312"),
|
||
(
|
||
DataFrame(5 * [[123, "Γειά σου", "Κόσμε"]], columns=["X", "Y", "Z"]),
|
||
"cp737",
|
||
),
|
||
],
|
||
)
|
||
def test_to_csv_compression(self, df, encoding, compression):
|
||
with tm.ensure_clean() as filename:
|
||
df.to_csv(filename, compression=compression, encoding=encoding)
|
||
# test the round trip - to_csv -> read_csv
|
||
result = read_csv(
|
||
filename, compression=compression, index_col=0, encoding=encoding
|
||
)
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# test the round trip using file handle - to_csv -> read_csv
|
||
with get_handle(
|
||
filename, "w", compression=compression, encoding=encoding
|
||
) as handles:
|
||
df.to_csv(handles.handle, encoding=encoding)
|
||
assert not handles.handle.closed
|
||
|
||
result = read_csv(
|
||
filename,
|
||
compression=compression,
|
||
encoding=encoding,
|
||
index_col=0,
|
||
).squeeze("columns")
|
||
tm.assert_frame_equal(df, result)
|
||
|
||
# explicitly make sure file is compressed
|
||
with tm.decompress_file(filename, compression) as fh:
|
||
text = fh.read().decode(encoding or "utf8")
|
||
for col in df.columns:
|
||
assert col in text
|
||
|
||
with tm.decompress_file(filename, compression) as fh:
|
||
tm.assert_frame_equal(df, read_csv(fh, index_col=0, encoding=encoding))
|
||
|
||
def test_to_csv_date_format(self, datetime_frame):
|
||
with tm.ensure_clean("__tmp_to_csv_date_format__") as path:
|
||
dt_index = datetime_frame.index
|
||
datetime_frame = DataFrame(
|
||
{"A": dt_index, "B": dt_index.shift(1)}, index=dt_index
|
||
)
|
||
datetime_frame.to_csv(path, date_format="%Y%m%d")
|
||
|
||
# Check that the data was put in the specified format
|
||
test = read_csv(path, index_col=0)
|
||
|
||
datetime_frame_int = datetime_frame.applymap(
|
||
lambda x: int(x.strftime("%Y%m%d"))
|
||
)
|
||
datetime_frame_int.index = datetime_frame_int.index.map(
|
||
lambda x: int(x.strftime("%Y%m%d"))
|
||
)
|
||
|
||
tm.assert_frame_equal(test, datetime_frame_int)
|
||
|
||
datetime_frame.to_csv(path, date_format="%Y-%m-%d")
|
||
|
||
# Check that the data was put in the specified format
|
||
test = read_csv(path, index_col=0)
|
||
datetime_frame_str = datetime_frame.applymap(
|
||
lambda x: x.strftime("%Y-%m-%d")
|
||
)
|
||
datetime_frame_str.index = datetime_frame_str.index.map(
|
||
lambda x: x.strftime("%Y-%m-%d")
|
||
)
|
||
|
||
tm.assert_frame_equal(test, datetime_frame_str)
|
||
|
||
# Check that columns get converted
|
||
datetime_frame_columns = datetime_frame.T
|
||
datetime_frame_columns.to_csv(path, date_format="%Y%m%d")
|
||
|
||
test = read_csv(path, index_col=0)
|
||
|
||
datetime_frame_columns = datetime_frame_columns.applymap(
|
||
lambda x: int(x.strftime("%Y%m%d"))
|
||
)
|
||
# Columns don't get converted to ints by read_csv
|
||
datetime_frame_columns.columns = datetime_frame_columns.columns.map(
|
||
lambda x: x.strftime("%Y%m%d")
|
||
)
|
||
|
||
tm.assert_frame_equal(test, datetime_frame_columns)
|
||
|
||
# test NaTs
|
||
nat_index = to_datetime(
|
||
["NaT"] * 10 + ["2000-01-01", "2000-01-01", "2000-01-01"]
|
||
)
|
||
nat_frame = DataFrame({"A": nat_index}, index=nat_index)
|
||
nat_frame.to_csv(path, date_format="%Y-%m-%d")
|
||
|
||
test = read_csv(path, parse_dates=[0, 1], index_col=0)
|
||
|
||
tm.assert_frame_equal(test, nat_frame)
|
||
|
||
@pytest.mark.parametrize("td", [pd.Timedelta(0), pd.Timedelta("10s")])
|
||
def test_to_csv_with_dst_transitions(self, td):
|
||
with tm.ensure_clean("csv_date_format_with_dst") as path:
|
||
# make sure we are not failing on transitions
|
||
times = date_range(
|
||
"2013-10-26 23:00",
|
||
"2013-10-27 01:00",
|
||
tz="Europe/London",
|
||
freq="H",
|
||
ambiguous="infer",
|
||
)
|
||
i = times + td
|
||
i = i._with_freq(None) # freq is not preserved by read_csv
|
||
time_range = np.array(range(len(i)), dtype="int64")
|
||
df = DataFrame({"A": time_range}, index=i)
|
||
df.to_csv(path, index=True)
|
||
# we have to reconvert the index as we
|
||
# don't parse the tz's
|
||
result = read_csv(path, index_col=0)
|
||
result.index = to_datetime(result.index, utc=True).tz_convert(
|
||
"Europe/London"
|
||
)
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
def test_to_csv_with_dst_transitions_with_pickle(self):
|
||
# GH11619
|
||
idx = date_range("2015-01-01", "2015-12-31", freq="H", tz="Europe/Paris")
|
||
idx = idx._with_freq(None) # freq does not round-trip
|
||
idx._data._freq = None # otherwise there is trouble on unpickle
|
||
df = DataFrame({"values": 1, "idx": idx}, index=idx)
|
||
with tm.ensure_clean("csv_date_format_with_dst") as path:
|
||
df.to_csv(path, index=True)
|
||
result = read_csv(path, index_col=0)
|
||
result.index = to_datetime(result.index, utc=True).tz_convert(
|
||
"Europe/Paris"
|
||
)
|
||
result["idx"] = to_datetime(result["idx"], utc=True).astype(
|
||
"datetime64[ns, Europe/Paris]"
|
||
)
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
# assert working
|
||
df.astype(str)
|
||
|
||
with tm.ensure_clean("csv_date_format_with_dst") as path:
|
||
df.to_pickle(path)
|
||
result = pd.read_pickle(path)
|
||
tm.assert_frame_equal(result, df)
|
||
|
||
def test_to_csv_quoting(self):
|
||
df = DataFrame(
|
||
{
|
||
"c_bool": [True, False],
|
||
"c_float": [1.0, 3.2],
|
||
"c_int": [42, np.nan],
|
||
"c_string": ["a", "b,c"],
|
||
}
|
||
)
|
||
|
||
expected_rows = [
|
||
",c_bool,c_float,c_int,c_string",
|
||
"0,True,1.0,42.0,a",
|
||
'1,False,3.2,,"b,c"',
|
||
]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
|
||
result = df.to_csv()
|
||
assert result == expected
|
||
|
||
result = df.to_csv(quoting=None)
|
||
assert result == expected
|
||
|
||
expected_rows = [
|
||
",c_bool,c_float,c_int,c_string",
|
||
"0,True,1.0,42.0,a",
|
||
'1,False,3.2,,"b,c"',
|
||
]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
|
||
result = df.to_csv(quoting=csv.QUOTE_MINIMAL)
|
||
assert result == expected
|
||
|
||
expected_rows = [
|
||
'"","c_bool","c_float","c_int","c_string"',
|
||
'"0","True","1.0","42.0","a"',
|
||
'"1","False","3.2","","b,c"',
|
||
]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
|
||
result = df.to_csv(quoting=csv.QUOTE_ALL)
|
||
assert result == expected
|
||
|
||
# see gh-12922, gh-13259: make sure changes to
|
||
# the formatters do not break this behaviour
|
||
expected_rows = [
|
||
'"","c_bool","c_float","c_int","c_string"',
|
||
'0,True,1.0,42.0,"a"',
|
||
'1,False,3.2,"","b,c"',
|
||
]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
result = df.to_csv(quoting=csv.QUOTE_NONNUMERIC)
|
||
assert result == expected
|
||
|
||
msg = "need to escape, but no escapechar set"
|
||
with pytest.raises(csv.Error, match=msg):
|
||
df.to_csv(quoting=csv.QUOTE_NONE)
|
||
|
||
with pytest.raises(csv.Error, match=msg):
|
||
df.to_csv(quoting=csv.QUOTE_NONE, escapechar=None)
|
||
|
||
expected_rows = [
|
||
",c_bool,c_float,c_int,c_string",
|
||
"0,True,1.0,42.0,a",
|
||
"1,False,3.2,,b!,c",
|
||
]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar="!")
|
||
assert result == expected
|
||
|
||
expected_rows = [
|
||
",c_bool,c_ffloat,c_int,c_string",
|
||
"0,True,1.0,42.0,a",
|
||
"1,False,3.2,,bf,c",
|
||
]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar="f")
|
||
assert result == expected
|
||
|
||
# see gh-3503: quoting Windows line terminators
|
||
# presents with encoding?
|
||
text_rows = ["a,b,c", '1,"test \r\n",3']
|
||
text = tm.convert_rows_list_to_csv_str(text_rows)
|
||
df = read_csv(StringIO(text))
|
||
|
||
buf = StringIO()
|
||
df.to_csv(buf, encoding="utf-8", index=False)
|
||
assert buf.getvalue() == text
|
||
|
||
# xref gh-7791: make sure the quoting parameter is passed through
|
||
# with multi-indexes
|
||
df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]})
|
||
df = df.set_index(["a", "b"])
|
||
|
||
expected_rows = ['"a","b","c"', '"1","3","5"', '"2","4","6"']
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert df.to_csv(quoting=csv.QUOTE_ALL) == expected
|
||
|
||
def test_period_index_date_overflow(self):
|
||
# see gh-15982
|
||
|
||
dates = ["1990-01-01", "2000-01-01", "3005-01-01"]
|
||
index = pd.PeriodIndex(dates, freq="D")
|
||
|
||
df = DataFrame([4, 5, 6], index=index)
|
||
result = df.to_csv()
|
||
|
||
expected_rows = [",0", "1990-01-01,4", "2000-01-01,5", "3005-01-01,6"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
date_format = "%m-%d-%Y"
|
||
result = df.to_csv(date_format=date_format)
|
||
|
||
expected_rows = [",0", "01-01-1990,4", "01-01-2000,5", "01-01-3005,6"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
# Overflow with pd.NaT
|
||
dates = ["1990-01-01", NaT, "3005-01-01"]
|
||
index = pd.PeriodIndex(dates, freq="D")
|
||
|
||
df = DataFrame([4, 5, 6], index=index)
|
||
result = df.to_csv()
|
||
|
||
expected_rows = [",0", "1990-01-01,4", ",5", "3005-01-01,6"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
def test_multi_index_header(self):
|
||
# see gh-5539
|
||
columns = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
|
||
df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]])
|
||
df.columns = columns
|
||
|
||
header = ["a", "b", "c", "d"]
|
||
result = df.to_csv(header=header)
|
||
|
||
expected_rows = [",a,b,c,d", "0,1,2,3,4", "1,5,6,7,8"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
def test_to_csv_single_level_multi_index(self):
|
||
# see gh-26303
|
||
index = Index([(1,), (2,), (3,)])
|
||
df = DataFrame([[1, 2, 3]], columns=index)
|
||
df = df.reindex(columns=[(1,), (3,)])
|
||
expected = ",1,3\n0,1,3\n"
|
||
result = df.to_csv(lineterminator="\n")
|
||
tm.assert_almost_equal(result, expected)
|
||
|
||
def test_gz_lineend(self):
|
||
# GH 25311
|
||
df = DataFrame({"a": [1, 2]})
|
||
expected_rows = ["a", "1", "2"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
with tm.ensure_clean("__test_gz_lineend.csv.gz") as path:
|
||
df.to_csv(path, index=False)
|
||
with tm.decompress_file(path, compression="gzip") as f:
|
||
result = f.read().decode("utf-8")
|
||
|
||
assert result == expected
|
||
|
||
def test_to_csv_numpy_16_bug(self):
|
||
frame = DataFrame({"a": date_range("1/1/2000", periods=10)})
|
||
|
||
buf = StringIO()
|
||
frame.to_csv(buf)
|
||
|
||
result = buf.getvalue()
|
||
assert "2000-01-01" in result
|
||
|
||
def test_to_csv_na_quoting(self):
|
||
# GH 15891
|
||
# Normalize carriage return for Windows OS
|
||
result = (
|
||
DataFrame([None, None])
|
||
.to_csv(None, header=False, index=False, na_rep="")
|
||
.replace("\r\n", "\n")
|
||
)
|
||
expected = '""\n""\n'
|
||
assert result == expected
|
||
|
||
def test_to_csv_categorical_and_ea(self):
|
||
# GH#46812
|
||
df = DataFrame({"a": "x", "b": [1, pd.NA]})
|
||
df["b"] = df["b"].astype("Int16")
|
||
df["b"] = df["b"].astype("category")
|
||
result = df.to_csv()
|
||
expected_rows = [",a,b", "0,x,1", "1,x,"]
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|
||
|
||
def test_to_csv_categorical_and_interval(self):
|
||
# GH#46297
|
||
df = DataFrame(
|
||
{
|
||
"a": [
|
||
pd.Interval(
|
||
Timestamp("2020-01-01"),
|
||
Timestamp("2020-01-02"),
|
||
closed="both",
|
||
)
|
||
]
|
||
}
|
||
)
|
||
df["a"] = df["a"].astype("category")
|
||
result = df.to_csv()
|
||
expected_rows = [",a", '0,"[2020-01-01, 2020-01-02]"']
|
||
expected = tm.convert_rows_list_to_csv_str(expected_rows)
|
||
assert result == expected
|