Inzynierka/Lib/site-packages/pandas/tests/frame/methods/test_to_csv.py
2023-06-02 12:51:02 +02:00

1309 lines
47 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import csv
from io import StringIO
import os
import numpy as np
import pytest
from pandas.errors import ParserError
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
NaT,
Series,
Timestamp,
date_range,
read_csv,
to_datetime,
)
import pandas._testing as tm
import pandas.core.common as com
from pandas.io.common import get_handle
class TestDataFrameToCSV:
def read_csv(self, path, **kwargs):
params = {"index_col": 0}
params.update(**kwargs)
return read_csv(path, **params)
def test_to_csv_from_csv1(self, float_frame, datetime_frame):
with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path:
float_frame.iloc[:5, float_frame.columns.get_loc("A")] = np.nan
float_frame.to_csv(path)
float_frame.to_csv(path, columns=["A", "B"])
float_frame.to_csv(path, header=False)
float_frame.to_csv(path, index=False)
# test roundtrip
# freq does not roundtrip
datetime_frame.index = datetime_frame.index._with_freq(None)
datetime_frame.to_csv(path)
recons = self.read_csv(path, parse_dates=True)
tm.assert_frame_equal(datetime_frame, recons)
datetime_frame.to_csv(path, index_label="index")
recons = self.read_csv(path, index_col=None, parse_dates=True)
assert len(recons.columns) == len(datetime_frame.columns) + 1
# no index
datetime_frame.to_csv(path, index=False)
recons = self.read_csv(path, index_col=None, parse_dates=True)
tm.assert_almost_equal(datetime_frame.values, recons.values)
# corner case
dm = DataFrame(
{
"s1": Series(range(3), index=np.arange(3, dtype=np.int64)),
"s2": Series(range(2), index=np.arange(2, dtype=np.int64)),
}
)
dm.to_csv(path)
recons = self.read_csv(path)
tm.assert_frame_equal(dm, recons)
def test_to_csv_from_csv2(self, float_frame):
with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path:
# duplicate index
df = DataFrame(
np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"]
)
df.to_csv(path)
result = self.read_csv(path)
tm.assert_frame_equal(result, df)
midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)])
df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"])
df.to_csv(path)
result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False)
tm.assert_frame_equal(result, df, check_names=False)
# column aliases
col_aliases = Index(["AA", "X", "Y", "Z"])
float_frame.to_csv(path, header=col_aliases)
rs = self.read_csv(path)
xp = float_frame.copy()
xp.columns = col_aliases
tm.assert_frame_equal(xp, rs)
msg = "Writing 4 cols but got 2 aliases"
with pytest.raises(ValueError, match=msg):
float_frame.to_csv(path, header=["AA", "X"])
def test_to_csv_from_csv3(self):
with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path:
df1 = DataFrame(np.random.randn(3, 1))
df2 = DataFrame(np.random.randn(3, 1))
df1.to_csv(path)
df2.to_csv(path, mode="a", header=False)
xp = pd.concat([df1, df2])
rs = read_csv(path, index_col=0)
rs.columns = [int(label) for label in rs.columns]
xp.columns = [int(label) for label in xp.columns]
tm.assert_frame_equal(xp, rs)
def test_to_csv_from_csv4(self):
with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path:
# GH 10833 (TimedeltaIndex formatting)
dt = pd.Timedelta(seconds=1)
df = DataFrame(
{"dt_data": [i * dt for i in range(3)]},
index=Index([i * dt for i in range(3)], name="dt_index"),
)
df.to_csv(path)
result = read_csv(path, index_col="dt_index")
result.index = pd.to_timedelta(result.index)
result["dt_data"] = pd.to_timedelta(result["dt_data"])
tm.assert_frame_equal(df, result, check_index_type=True)
def test_to_csv_from_csv5(self, timezone_frame):
# tz, 8260
with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path:
timezone_frame.to_csv(path)
result = read_csv(path, index_col=0, parse_dates=["A"])
converter = (
lambda c: to_datetime(result[c])
.dt.tz_convert("UTC")
.dt.tz_convert(timezone_frame[c].dt.tz)
)
result["B"] = converter("B")
result["C"] = converter("C")
tm.assert_frame_equal(result, timezone_frame)
def test_to_csv_cols_reordering(self):
# GH3454
chunksize = 5
N = int(chunksize * 2.5)
df = tm.makeCustomDataframe(N, 3)
cs = df.columns
cols = [cs[2], cs[0]]
with tm.ensure_clean() as path:
df.to_csv(path, columns=cols, chunksize=chunksize)
rs_c = read_csv(path, index_col=0)
tm.assert_frame_equal(df[cols], rs_c, check_names=False)
@pytest.mark.parametrize("cols", [None, ["b", "a"]])
def test_to_csv_new_dupe_cols(self, cols):
chunksize = 5
N = int(chunksize * 2.5)
# dupe cols
df = tm.makeCustomDataframe(N, 3)
df.columns = ["a", "a", "b"]
with tm.ensure_clean() as path:
df.to_csv(path, columns=cols, chunksize=chunksize)
rs_c = read_csv(path, index_col=0)
# we wrote them in a different order
# so compare them in that order
if cols is not None:
if df.columns.is_unique:
rs_c.columns = cols
else:
indexer, missing = df.columns.get_indexer_non_unique(cols)
rs_c.columns = df.columns.take(indexer)
for c in cols:
obj_df = df[c]
obj_rs = rs_c[c]
if isinstance(obj_df, Series):
tm.assert_series_equal(obj_df, obj_rs)
else:
tm.assert_frame_equal(obj_df, obj_rs, check_names=False)
# wrote in the same order
else:
rs_c.columns = df.columns
tm.assert_frame_equal(df, rs_c, check_names=False)
@pytest.mark.slow
def test_to_csv_dtnat(self):
# GH3437
def make_dtnat_arr(n, nnat=None):
if nnat is None:
nnat = int(n * 0.1) # 10%
s = list(date_range("2000", freq="5min", periods=n))
if nnat:
for i in np.random.randint(0, len(s), nnat):
s[i] = NaT
i = np.random.randint(100)
s[-i] = NaT
s[i] = NaT
return s
chunksize = 1000
s1 = make_dtnat_arr(chunksize + 5)
s2 = make_dtnat_arr(chunksize + 5, 0)
with tm.ensure_clean("1.csv") as pth:
df = DataFrame({"a": s1, "b": s2})
df.to_csv(pth, chunksize=chunksize)
recons = self.read_csv(pth).apply(to_datetime)
tm.assert_frame_equal(df, recons, check_names=False)
def _return_result_expected(
self,
df,
chunksize,
r_dtype=None,
c_dtype=None,
rnlvl=None,
cnlvl=None,
dupe_col=False,
):
kwargs = {"parse_dates": False}
if cnlvl:
if rnlvl is not None:
kwargs["index_col"] = list(range(rnlvl))
kwargs["header"] = list(range(cnlvl))
with tm.ensure_clean("__tmp_to_csv_moar__") as path:
df.to_csv(path, encoding="utf8", chunksize=chunksize)
recons = self.read_csv(path, **kwargs)
else:
kwargs["header"] = 0
with tm.ensure_clean("__tmp_to_csv_moar__") as path:
df.to_csv(path, encoding="utf8", chunksize=chunksize)
recons = self.read_csv(path, **kwargs)
def _to_uni(x):
if not isinstance(x, str):
return x.decode("utf8")
return x
if dupe_col:
# read_Csv disambiguates the columns by
# labeling them dupe.1,dupe.2, etc'. monkey patch columns
recons.columns = df.columns
if rnlvl and not cnlvl:
delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)]
ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl)
recons.index = ix
recons = recons.iloc[:, rnlvl - 1 :]
type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"}
if r_dtype:
if r_dtype == "u": # unicode
r_dtype = "O"
recons.index = np.array(
[_to_uni(label) for label in recons.index], dtype=r_dtype
)
df.index = np.array(
[_to_uni(label) for label in df.index], dtype=r_dtype
)
elif r_dtype == "dt": # unicode
r_dtype = "O"
recons.index = np.array(
[Timestamp(label) for label in recons.index], dtype=r_dtype
)
df.index = np.array(
[Timestamp(label) for label in df.index], dtype=r_dtype
)
elif r_dtype == "p":
r_dtype = "O"
idx_list = to_datetime(recons.index)
recons.index = np.array(
[Timestamp(label) for label in idx_list], dtype=r_dtype
)
df.index = np.array(
list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype
)
else:
r_dtype = type_map.get(r_dtype)
recons.index = np.array(recons.index, dtype=r_dtype)
df.index = np.array(df.index, dtype=r_dtype)
if c_dtype:
if c_dtype == "u":
c_dtype = "O"
recons.columns = np.array(
[_to_uni(label) for label in recons.columns], dtype=c_dtype
)
df.columns = np.array(
[_to_uni(label) for label in df.columns], dtype=c_dtype
)
elif c_dtype == "dt":
c_dtype = "O"
recons.columns = np.array(
[Timestamp(label) for label in recons.columns], dtype=c_dtype
)
df.columns = np.array(
[Timestamp(label) for label in df.columns], dtype=c_dtype
)
elif c_dtype == "p":
c_dtype = "O"
col_list = to_datetime(recons.columns)
recons.columns = np.array(
[Timestamp(label) for label in col_list], dtype=c_dtype
)
col_list = df.columns.to_timestamp()
df.columns = np.array(
[Timestamp(label) for label in col_list], dtype=c_dtype
)
else:
c_dtype = type_map.get(c_dtype)
recons.columns = np.array(recons.columns, dtype=c_dtype)
df.columns = np.array(df.columns, dtype=c_dtype)
return df, recons
@pytest.mark.slow
@pytest.mark.parametrize(
"nrows", [2, 10, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
)
def test_to_csv_nrows(self, nrows):
df = tm.makeCustomDataframe(nrows, 4, r_idx_type="dt", c_idx_type="s")
result, expected = self._return_result_expected(df, 1000, "dt", "s")
tm.assert_frame_equal(result, expected, check_names=False)
@pytest.mark.slow
@pytest.mark.parametrize(
"nrows", [2, 10, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
)
@pytest.mark.parametrize(
"r_idx_type, c_idx_type", [("i", "i"), ("s", "s"), ("s", "dt"), ("p", "p")]
)
@pytest.mark.parametrize("ncols", [1, 2, 3, 4])
def test_to_csv_idx_types(self, nrows, r_idx_type, c_idx_type, ncols):
df = tm.makeCustomDataframe(
nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type
)
result, expected = self._return_result_expected(
df,
1000,
r_idx_type,
c_idx_type,
)
tm.assert_frame_equal(result, expected, check_names=False)
@pytest.mark.slow
@pytest.mark.parametrize(
"nrows", [10, 98, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
)
@pytest.mark.parametrize("ncols", [1, 2, 3, 4])
def test_to_csv_idx_ncols(self, nrows, ncols):
df = tm.makeCustomDataframe(nrows, ncols)
result, expected = self._return_result_expected(df, 1000)
tm.assert_frame_equal(result, expected, check_names=False)
@pytest.mark.slow
@pytest.mark.parametrize("nrows", [10, 98, 99, 100, 101, 102])
def test_to_csv_dup_cols(self, nrows):
df = tm.makeCustomDataframe(nrows, 3)
cols = list(df.columns)
cols[:2] = ["dupe", "dupe"]
cols[-2:] = ["dupe", "dupe"]
ix = list(df.index)
ix[:2] = ["rdupe", "rdupe"]
ix[-2:] = ["rdupe", "rdupe"]
df.index = ix
df.columns = cols
result, expected = self._return_result_expected(df, 1000, dupe_col=True)
tm.assert_frame_equal(result, expected, check_names=False)
@pytest.mark.slow
def test_to_csv_empty(self):
df = DataFrame(index=np.arange(10, dtype=np.int64))
result, expected = self._return_result_expected(df, 1000)
tm.assert_frame_equal(result, expected, check_column_type=False)
@pytest.mark.slow
def test_to_csv_chunksize(self):
chunksize = 1000
df = tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2)
result, expected = self._return_result_expected(df, chunksize, rnlvl=2)
tm.assert_frame_equal(result, expected, check_names=False)
@pytest.mark.slow
@pytest.mark.parametrize(
"nrows", [2, 10, 99, 100, 101, 102, 198, 199, 200, 201, 202, 249, 250, 251]
)
@pytest.mark.parametrize("ncols", [2, 3, 4])
@pytest.mark.parametrize(
"df_params, func_params",
[
[{"r_idx_nlevels": 2}, {"rnlvl": 2}],
[{"c_idx_nlevels": 2}, {"cnlvl": 2}],
[{"r_idx_nlevels": 2, "c_idx_nlevels": 2}, {"rnlvl": 2, "cnlvl": 2}],
],
)
def test_to_csv_params(self, nrows, df_params, func_params, ncols):
df = tm.makeCustomDataframe(nrows, ncols, **df_params)
result, expected = self._return_result_expected(df, 1000, **func_params)
tm.assert_frame_equal(result, expected, check_names=False)
def test_to_csv_from_csv_w_some_infs(self, float_frame):
# test roundtrip with inf, -inf, nan, as full columns and mix
float_frame["G"] = np.nan
f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5]
float_frame["H"] = float_frame.index.map(f)
with tm.ensure_clean() as path:
float_frame.to_csv(path)
recons = self.read_csv(path)
tm.assert_frame_equal(float_frame, recons)
tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons))
def test_to_csv_from_csv_w_all_infs(self, float_frame):
# test roundtrip with inf, -inf, nan, as full columns and mix
float_frame["E"] = np.inf
float_frame["F"] = -np.inf
with tm.ensure_clean() as path:
float_frame.to_csv(path)
recons = self.read_csv(path)
tm.assert_frame_equal(float_frame, recons)
tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons))
def test_to_csv_no_index(self):
# GH 3624, after appending columns, to_csv fails
with tm.ensure_clean("__tmp_to_csv_no_index__") as path:
df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]})
df.to_csv(path, index=False)
result = read_csv(path)
tm.assert_frame_equal(df, result)
df["c3"] = Series([7, 8, 9], dtype="int64")
df.to_csv(path, index=False)
result = read_csv(path)
tm.assert_frame_equal(df, result)
def test_to_csv_with_mix_columns(self):
# gh-11637: incorrect output when a mix of integer and string column
# names passed as columns parameter in to_csv
df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]})
df["test"] = "txt"
assert df.to_csv() == df.to_csv(columns=[0, 1, "test"])
def test_to_csv_headers(self):
# GH6186, the presence or absence of `index` incorrectly
# causes to_csv to have different header semantics.
from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"])
with tm.ensure_clean("__tmp_to_csv_headers__") as path:
from_df.to_csv(path, header=["X", "Y"])
recons = self.read_csv(path)
tm.assert_frame_equal(to_df, recons)
from_df.to_csv(path, index=False, header=["X", "Y"])
recons = self.read_csv(path)
return_value = recons.reset_index(inplace=True)
assert return_value is None
tm.assert_frame_equal(to_df, recons)
def test_to_csv_multiindex(self, float_frame, datetime_frame):
frame = float_frame
old_index = frame.index
arrays = np.arange(len(old_index) * 2, dtype=np.int64).reshape(2, -1)
new_index = MultiIndex.from_arrays(arrays, names=["first", "second"])
frame.index = new_index
with tm.ensure_clean("__tmp_to_csv_multiindex__") as path:
frame.to_csv(path, header=False)
frame.to_csv(path, columns=["A", "B"])
# round trip
frame.to_csv(path)
df = self.read_csv(path, index_col=[0, 1], parse_dates=False)
# TODO to_csv drops column name
tm.assert_frame_equal(frame, df, check_names=False)
assert frame.index.names == df.index.names
# needed if setUp becomes a class method
float_frame.index = old_index
# try multiindex with dates
tsframe = datetime_frame
old_index = tsframe.index
new_index = [old_index, np.arange(len(old_index), dtype=np.int64)]
tsframe.index = MultiIndex.from_arrays(new_index)
tsframe.to_csv(path, index_label=["time", "foo"])
with tm.assert_produces_warning(
UserWarning, match="Could not infer format"
):
recons = self.read_csv(path, index_col=[0, 1], parse_dates=True)
# TODO to_csv drops column name
tm.assert_frame_equal(tsframe, recons, check_names=False)
# do not load index
tsframe.to_csv(path)
recons = self.read_csv(path, index_col=None)
assert len(recons.columns) == len(tsframe.columns) + 2
# no index
tsframe.to_csv(path, index=False)
recons = self.read_csv(path, index_col=None)
tm.assert_almost_equal(recons.values, datetime_frame.values)
# needed if setUp becomes class method
datetime_frame.index = old_index
with tm.ensure_clean("__tmp_to_csv_multiindex__") as path:
# GH3571, GH1651, GH3141
def _make_frame(names=None):
if names is True:
names = ["first", "second"]
return DataFrame(
np.random.randint(0, 10, size=(3, 3)),
columns=MultiIndex.from_tuples(
[("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names
),
dtype="int64",
)
# column & index are multi-index
df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4)
df.to_csv(path)
result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1])
tm.assert_frame_equal(df, result)
# column is mi
df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4)
df.to_csv(path)
result = read_csv(path, header=[0, 1, 2, 3], index_col=0)
tm.assert_frame_equal(df, result)
# dup column names?
df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4)
df.to_csv(path)
result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2])
tm.assert_frame_equal(df, result)
# writing with no index
df = _make_frame()
df.to_csv(path, index=False)
result = read_csv(path, header=[0, 1])
tm.assert_frame_equal(df, result)
# we lose the names here
df = _make_frame(True)
df.to_csv(path, index=False)
result = read_csv(path, header=[0, 1])
assert com.all_none(*result.columns.names)
result.columns.names = df.columns.names
tm.assert_frame_equal(df, result)
# whatsnew example
df = _make_frame()
df.to_csv(path)
result = read_csv(path, header=[0, 1], index_col=[0])
tm.assert_frame_equal(df, result)
df = _make_frame(True)
df.to_csv(path)
result = read_csv(path, header=[0, 1], index_col=[0])
tm.assert_frame_equal(df, result)
# invalid options
df = _make_frame(True)
df.to_csv(path)
for i in [6, 7]:
msg = f"len of {i}, but only 5 lines in file"
with pytest.raises(ParserError, match=msg):
read_csv(path, header=list(range(i)), index_col=0)
# write with cols
msg = "cannot specify cols with a MultiIndex"
with pytest.raises(TypeError, match=msg):
df.to_csv(path, columns=["foo", "bar"])
with tm.ensure_clean("__tmp_to_csv_multiindex__") as path:
# empty
tsframe[:0].to_csv(path)
recons = self.read_csv(path)
exp = tsframe[:0]
exp.index = []
tm.assert_index_equal(recons.columns, exp.columns)
assert len(recons) == 0
def test_to_csv_interval_index(self):
# GH 28210
df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3))
with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path:
df.to_csv(path)
result = self.read_csv(path, index_col=0)
# can't roundtrip intervalindex via read_csv so check string repr (GH 23595)
expected = df.copy()
expected.index = expected.index.astype(str)
tm.assert_frame_equal(result, expected)
def test_to_csv_float32_nanrep(self):
df = DataFrame(np.random.randn(1, 4).astype(np.float32))
df[1] = np.nan
with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path:
df.to_csv(path, na_rep=999)
with open(path) as f:
lines = f.readlines()
assert lines[1].split(",")[2] == "999"
def test_to_csv_withcommas(self):
# Commas inside fields should be correctly escaped when saving as CSV.
df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]})
with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path:
df.to_csv(path)
df2 = self.read_csv(path)
tm.assert_frame_equal(df2, df)
def test_to_csv_mixed(self):
def create_cols(name):
return [f"{name}{i:03d}" for i in range(5)]
df_float = DataFrame(
np.random.randn(100, 5), dtype="float64", columns=create_cols("float")
)
df_int = DataFrame(
np.random.randn(100, 5).astype("int64"),
dtype="int64",
columns=create_cols("int"),
)
df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool"))
df_object = DataFrame(
"foo", index=df_float.index, columns=create_cols("object")
)
df_dt = DataFrame(
Timestamp("20010101"), index=df_float.index, columns=create_cols("date")
)
# add in some nans
df_float.iloc[30:50, 1:3] = np.nan
# ## this is a bug in read_csv right now ####
# df_dt.loc[30:50,1:3] = np.nan
df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
# dtype
dtypes = {}
for n, dtype in [
("float", np.float64),
("int", np.int64),
("bool", np.bool_),
("object", object),
]:
for c in create_cols(n):
dtypes[c] = dtype
with tm.ensure_clean() as filename:
df.to_csv(filename)
rs = read_csv(
filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date")
)
tm.assert_frame_equal(rs, df)
def test_to_csv_dups_cols(self):
df = DataFrame(
np.random.randn(1000, 30),
columns=list(range(15)) + list(range(15)),
dtype="float64",
)
with tm.ensure_clean() as filename:
df.to_csv(filename) # single dtype, fine
result = read_csv(filename, index_col=0)
result.columns = df.columns
tm.assert_frame_equal(result, df)
df_float = DataFrame(np.random.randn(1000, 3), dtype="float64")
df_int = DataFrame(np.random.randn(1000, 3)).astype("int64")
df_bool = DataFrame(True, index=df_float.index, columns=range(3))
df_object = DataFrame("foo", index=df_float.index, columns=range(3))
df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3))
df = pd.concat(
[df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True
)
df.columns = [0, 1, 2] * 5
with tm.ensure_clean() as filename:
df.to_csv(filename)
result = read_csv(filename, index_col=0)
# date cols
for i in ["0.4", "1.4", "2.4"]:
result[i] = to_datetime(result[i])
result.columns = df.columns
tm.assert_frame_equal(result, df)
# GH3457
N = 10
df = tm.makeCustomDataframe(N, 3)
df.columns = ["a", "a", "b"]
with tm.ensure_clean() as filename:
df.to_csv(filename)
# read_csv will rename the dups columns
result = read_csv(filename, index_col=0)
result = result.rename(columns={"a.1": "a"})
tm.assert_frame_equal(result, df)
@pytest.mark.parametrize("chunksize", [10000, 50000, 100000])
def test_to_csv_chunking(self, chunksize):
aa = DataFrame({"A": range(100000)})
aa["B"] = aa.A + 1.0
aa["C"] = aa.A + 2.0
aa["D"] = aa.A + 3.0
with tm.ensure_clean() as filename:
aa.to_csv(filename, chunksize=chunksize)
rs = read_csv(filename, index_col=0)
tm.assert_frame_equal(rs, aa)
@pytest.mark.slow
def test_to_csv_wide_frame_formatting(self):
# Issue #8621
df = DataFrame(np.random.randn(1, 100010), columns=None, index=None)
with tm.ensure_clean() as filename:
df.to_csv(filename, header=False, index=False)
rs = read_csv(filename, header=None)
tm.assert_frame_equal(rs, df)
def test_to_csv_bug(self):
f1 = StringIO("a,1.0\nb,2.0")
df = self.read_csv(f1, header=None)
newdf = DataFrame({"t": df[df.columns[0]]})
with tm.ensure_clean() as path:
newdf.to_csv(path)
recons = read_csv(path, index_col=0)
# don't check_names as t != 1
tm.assert_frame_equal(recons, newdf, check_names=False)
def test_to_csv_unicode(self):
df = DataFrame({"c/\u03c3": [1, 2, 3]})
with tm.ensure_clean() as path:
df.to_csv(path, encoding="UTF-8")
df2 = read_csv(path, index_col=0, encoding="UTF-8")
tm.assert_frame_equal(df, df2)
df.to_csv(path, encoding="UTF-8", index=False)
df2 = read_csv(path, index_col=None, encoding="UTF-8")
tm.assert_frame_equal(df, df2)
def test_to_csv_unicode_index_col(self):
buf = StringIO("")
df = DataFrame(
[["\u05d0", "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]],
columns=["\u05d0", "\u05d1", "\u05d2", "\u05d3"],
index=["\u05d0", "\u05d1"],
)
df.to_csv(buf, encoding="UTF-8")
buf.seek(0)
df2 = read_csv(buf, index_col=0, encoding="UTF-8")
tm.assert_frame_equal(df, df2)
def test_to_csv_stringio(self, float_frame):
buf = StringIO()
float_frame.to_csv(buf)
buf.seek(0)
recons = read_csv(buf, index_col=0)
tm.assert_frame_equal(recons, float_frame)
def test_to_csv_float_format(self):
df = DataFrame(
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
with tm.ensure_clean() as filename:
df.to_csv(filename, float_format="%.2f")
rs = read_csv(filename, index_col=0)
xp = DataFrame(
[[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
tm.assert_frame_equal(rs, xp)
def test_to_csv_float_format_over_decimal(self):
# GH#47436
df = DataFrame({"a": [0.5, 1.0]})
result = df.to_csv(
decimal=",",
float_format=lambda x: np.format_float_positional(x, trim="-"),
index=False,
)
expected_rows = ["a", "0.5", "1"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
def test_to_csv_unicodewriter_quoting(self):
df = DataFrame({"A": [1, 2, 3], "B": ["foo", "bar", "baz"]})
buf = StringIO()
df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding="utf-8")
result = buf.getvalue()
expected_rows = ['"A","B"', '1,"foo"', '2,"bar"', '3,"baz"']
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
@pytest.mark.parametrize("encoding", [None, "utf-8"])
def test_to_csv_quote_none(self, encoding):
# GH4328
df = DataFrame({"A": ["hello", '{"hello"}']})
buf = StringIO()
df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False)
result = buf.getvalue()
expected_rows = ["A", "hello", '{"hello"}']
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
def test_to_csv_index_no_leading_comma(self):
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"])
buf = StringIO()
df.to_csv(buf, index_label=False)
expected_rows = ["A,B", "one,1,4", "two,2,5", "three,3,6"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert buf.getvalue() == expected
def test_to_csv_lineterminators(self):
# see gh-20353
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"])
with tm.ensure_clean() as path:
# case 1: CRLF as line terminator
df.to_csv(path, lineterminator="\r\n")
expected = b",A,B\r\none,1,4\r\ntwo,2,5\r\nthree,3,6\r\n"
with open(path, mode="rb") as f:
assert f.read() == expected
with tm.ensure_clean() as path:
# case 2: LF as line terminator
df.to_csv(path, lineterminator="\n")
expected = b",A,B\none,1,4\ntwo,2,5\nthree,3,6\n"
with open(path, mode="rb") as f:
assert f.read() == expected
with tm.ensure_clean() as path:
# case 3: The default line terminator(=os.linesep)(gh-21406)
df.to_csv(path)
os_linesep = os.linesep.encode("utf-8")
expected = (
b",A,B"
+ os_linesep
+ b"one,1,4"
+ os_linesep
+ b"two,2,5"
+ os_linesep
+ b"three,3,6"
+ os_linesep
)
with open(path, mode="rb") as f:
assert f.read() == expected
def test_to_csv_from_csv_categorical(self):
# CSV with categoricals should result in the same output
# as when one would add a "normal" Series/DataFrame.
s = Series(pd.Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]))
s2 = Series(["a", "b", "b", "a", "a", "c", "c", "c"])
res = StringIO()
s.to_csv(res, header=False)
exp = StringIO()
s2.to_csv(exp, header=False)
assert res.getvalue() == exp.getvalue()
df = DataFrame({"s": s})
df2 = DataFrame({"s": s2})
res = StringIO()
df.to_csv(res)
exp = StringIO()
df2.to_csv(exp)
assert res.getvalue() == exp.getvalue()
def test_to_csv_path_is_none(self, float_frame):
# GH 8215
# Make sure we return string for consistency with
# Series.to_csv()
csv_str = float_frame.to_csv(path_or_buf=None)
assert isinstance(csv_str, str)
recons = read_csv(StringIO(csv_str), index_col=0)
tm.assert_frame_equal(float_frame, recons)
@pytest.mark.parametrize(
"df,encoding",
[
(
DataFrame(
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
index=["A", "B"],
columns=["X", "Y", "Z"],
),
None,
),
# GH 21241, 21118
(DataFrame([["abc", "def", "ghi"]], columns=["X", "Y", "Z"]), "ascii"),
(DataFrame(5 * [[123, "你好", "世界"]], columns=["X", "Y", "Z"]), "gb2312"),
(
DataFrame(5 * [[123, "Γειά σου", "Κόσμε"]], columns=["X", "Y", "Z"]),
"cp737",
),
],
)
def test_to_csv_compression(self, df, encoding, compression):
with tm.ensure_clean() as filename:
df.to_csv(filename, compression=compression, encoding=encoding)
# test the round trip - to_csv -> read_csv
result = read_csv(
filename, compression=compression, index_col=0, encoding=encoding
)
tm.assert_frame_equal(df, result)
# test the round trip using file handle - to_csv -> read_csv
with get_handle(
filename, "w", compression=compression, encoding=encoding
) as handles:
df.to_csv(handles.handle, encoding=encoding)
assert not handles.handle.closed
result = read_csv(
filename,
compression=compression,
encoding=encoding,
index_col=0,
).squeeze("columns")
tm.assert_frame_equal(df, result)
# explicitly make sure file is compressed
with tm.decompress_file(filename, compression) as fh:
text = fh.read().decode(encoding or "utf8")
for col in df.columns:
assert col in text
with tm.decompress_file(filename, compression) as fh:
tm.assert_frame_equal(df, read_csv(fh, index_col=0, encoding=encoding))
def test_to_csv_date_format(self, datetime_frame):
with tm.ensure_clean("__tmp_to_csv_date_format__") as path:
dt_index = datetime_frame.index
datetime_frame = DataFrame(
{"A": dt_index, "B": dt_index.shift(1)}, index=dt_index
)
datetime_frame.to_csv(path, date_format="%Y%m%d")
# Check that the data was put in the specified format
test = read_csv(path, index_col=0)
datetime_frame_int = datetime_frame.applymap(
lambda x: int(x.strftime("%Y%m%d"))
)
datetime_frame_int.index = datetime_frame_int.index.map(
lambda x: int(x.strftime("%Y%m%d"))
)
tm.assert_frame_equal(test, datetime_frame_int)
datetime_frame.to_csv(path, date_format="%Y-%m-%d")
# Check that the data was put in the specified format
test = read_csv(path, index_col=0)
datetime_frame_str = datetime_frame.applymap(
lambda x: x.strftime("%Y-%m-%d")
)
datetime_frame_str.index = datetime_frame_str.index.map(
lambda x: x.strftime("%Y-%m-%d")
)
tm.assert_frame_equal(test, datetime_frame_str)
# Check that columns get converted
datetime_frame_columns = datetime_frame.T
datetime_frame_columns.to_csv(path, date_format="%Y%m%d")
test = read_csv(path, index_col=0)
datetime_frame_columns = datetime_frame_columns.applymap(
lambda x: int(x.strftime("%Y%m%d"))
)
# Columns don't get converted to ints by read_csv
datetime_frame_columns.columns = datetime_frame_columns.columns.map(
lambda x: x.strftime("%Y%m%d")
)
tm.assert_frame_equal(test, datetime_frame_columns)
# test NaTs
nat_index = to_datetime(
["NaT"] * 10 + ["2000-01-01", "2000-01-01", "2000-01-01"]
)
nat_frame = DataFrame({"A": nat_index}, index=nat_index)
nat_frame.to_csv(path, date_format="%Y-%m-%d")
test = read_csv(path, parse_dates=[0, 1], index_col=0)
tm.assert_frame_equal(test, nat_frame)
@pytest.mark.parametrize("td", [pd.Timedelta(0), pd.Timedelta("10s")])
def test_to_csv_with_dst_transitions(self, td):
with tm.ensure_clean("csv_date_format_with_dst") as path:
# make sure we are not failing on transitions
times = date_range(
"2013-10-26 23:00",
"2013-10-27 01:00",
tz="Europe/London",
freq="H",
ambiguous="infer",
)
i = times + td
i = i._with_freq(None) # freq is not preserved by read_csv
time_range = np.array(range(len(i)), dtype="int64")
df = DataFrame({"A": time_range}, index=i)
df.to_csv(path, index=True)
# we have to reconvert the index as we
# don't parse the tz's
result = read_csv(path, index_col=0)
result.index = to_datetime(result.index, utc=True).tz_convert(
"Europe/London"
)
tm.assert_frame_equal(result, df)
def test_to_csv_with_dst_transitions_with_pickle(self):
# GH11619
idx = date_range("2015-01-01", "2015-12-31", freq="H", tz="Europe/Paris")
idx = idx._with_freq(None) # freq does not round-trip
idx._data._freq = None # otherwise there is trouble on unpickle
df = DataFrame({"values": 1, "idx": idx}, index=idx)
with tm.ensure_clean("csv_date_format_with_dst") as path:
df.to_csv(path, index=True)
result = read_csv(path, index_col=0)
result.index = to_datetime(result.index, utc=True).tz_convert(
"Europe/Paris"
)
result["idx"] = to_datetime(result["idx"], utc=True).astype(
"datetime64[ns, Europe/Paris]"
)
tm.assert_frame_equal(result, df)
# assert working
df.astype(str)
with tm.ensure_clean("csv_date_format_with_dst") as path:
df.to_pickle(path)
result = pd.read_pickle(path)
tm.assert_frame_equal(result, df)
def test_to_csv_quoting(self):
df = DataFrame(
{
"c_bool": [True, False],
"c_float": [1.0, 3.2],
"c_int": [42, np.nan],
"c_string": ["a", "b,c"],
}
)
expected_rows = [
",c_bool,c_float,c_int,c_string",
"0,True,1.0,42.0,a",
'1,False,3.2,,"b,c"',
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv()
assert result == expected
result = df.to_csv(quoting=None)
assert result == expected
expected_rows = [
",c_bool,c_float,c_int,c_string",
"0,True,1.0,42.0,a",
'1,False,3.2,,"b,c"',
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv(quoting=csv.QUOTE_MINIMAL)
assert result == expected
expected_rows = [
'"","c_bool","c_float","c_int","c_string"',
'"0","True","1.0","42.0","a"',
'"1","False","3.2","","b,c"',
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv(quoting=csv.QUOTE_ALL)
assert result == expected
# see gh-12922, gh-13259: make sure changes to
# the formatters do not break this behaviour
expected_rows = [
'"","c_bool","c_float","c_int","c_string"',
'0,True,1.0,42.0,"a"',
'1,False,3.2,"","b,c"',
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv(quoting=csv.QUOTE_NONNUMERIC)
assert result == expected
msg = "need to escape, but no escapechar set"
with pytest.raises(csv.Error, match=msg):
df.to_csv(quoting=csv.QUOTE_NONE)
with pytest.raises(csv.Error, match=msg):
df.to_csv(quoting=csv.QUOTE_NONE, escapechar=None)
expected_rows = [
",c_bool,c_float,c_int,c_string",
"0,True,1.0,42.0,a",
"1,False,3.2,,b!,c",
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar="!")
assert result == expected
expected_rows = [
",c_bool,c_ffloat,c_int,c_string",
"0,True,1.0,42.0,a",
"1,False,3.2,,bf,c",
]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar="f")
assert result == expected
# see gh-3503: quoting Windows line terminators
# presents with encoding?
text_rows = ["a,b,c", '1,"test \r\n",3']
text = tm.convert_rows_list_to_csv_str(text_rows)
df = read_csv(StringIO(text))
buf = StringIO()
df.to_csv(buf, encoding="utf-8", index=False)
assert buf.getvalue() == text
# xref gh-7791: make sure the quoting parameter is passed through
# with multi-indexes
df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]})
df = df.set_index(["a", "b"])
expected_rows = ['"a","b","c"', '"1","3","5"', '"2","4","6"']
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert df.to_csv(quoting=csv.QUOTE_ALL) == expected
def test_period_index_date_overflow(self):
# see gh-15982
dates = ["1990-01-01", "2000-01-01", "3005-01-01"]
index = pd.PeriodIndex(dates, freq="D")
df = DataFrame([4, 5, 6], index=index)
result = df.to_csv()
expected_rows = [",0", "1990-01-01,4", "2000-01-01,5", "3005-01-01,6"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
date_format = "%m-%d-%Y"
result = df.to_csv(date_format=date_format)
expected_rows = [",0", "01-01-1990,4", "01-01-2000,5", "01-01-3005,6"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
# Overflow with pd.NaT
dates = ["1990-01-01", NaT, "3005-01-01"]
index = pd.PeriodIndex(dates, freq="D")
df = DataFrame([4, 5, 6], index=index)
result = df.to_csv()
expected_rows = [",0", "1990-01-01,4", ",5", "3005-01-01,6"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
def test_multi_index_header(self):
# see gh-5539
columns = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]])
df.columns = columns
header = ["a", "b", "c", "d"]
result = df.to_csv(header=header)
expected_rows = [",a,b,c,d", "0,1,2,3,4", "1,5,6,7,8"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
def test_to_csv_single_level_multi_index(self):
# see gh-26303
index = Index([(1,), (2,), (3,)])
df = DataFrame([[1, 2, 3]], columns=index)
df = df.reindex(columns=[(1,), (3,)])
expected = ",1,3\n0,1,3\n"
result = df.to_csv(lineterminator="\n")
tm.assert_almost_equal(result, expected)
def test_gz_lineend(self):
# GH 25311
df = DataFrame({"a": [1, 2]})
expected_rows = ["a", "1", "2"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
with tm.ensure_clean("__test_gz_lineend.csv.gz") as path:
df.to_csv(path, index=False)
with tm.decompress_file(path, compression="gzip") as f:
result = f.read().decode("utf-8")
assert result == expected
def test_to_csv_numpy_16_bug(self):
frame = DataFrame({"a": date_range("1/1/2000", periods=10)})
buf = StringIO()
frame.to_csv(buf)
result = buf.getvalue()
assert "2000-01-01" in result
def test_to_csv_na_quoting(self):
# GH 15891
# Normalize carriage return for Windows OS
result = (
DataFrame([None, None])
.to_csv(None, header=False, index=False, na_rep="")
.replace("\r\n", "\n")
)
expected = '""\n""\n'
assert result == expected
def test_to_csv_categorical_and_ea(self):
# GH#46812
df = DataFrame({"a": "x", "b": [1, pd.NA]})
df["b"] = df["b"].astype("Int16")
df["b"] = df["b"].astype("category")
result = df.to_csv()
expected_rows = [",a,b", "0,x,1", "1,x,"]
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected
def test_to_csv_categorical_and_interval(self):
# GH#46297
df = DataFrame(
{
"a": [
pd.Interval(
Timestamp("2020-01-01"),
Timestamp("2020-01-02"),
closed="both",
)
]
}
)
df["a"] = df["a"].astype("category")
result = df.to_csv()
expected_rows = [",a", '0,"[2020-01-01, 2020-01-02]"']
expected = tm.convert_rows_list_to_csv_str(expected_rows)
assert result == expected