91 lines
3.3 KiB
Python
91 lines
3.3 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
Categorical,
|
|
CategoricalIndex,
|
|
Index,
|
|
MultiIndex,
|
|
)
|
|
|
|
|
|
class TestEquals:
|
|
def test_equals_categorical(self):
|
|
ci1 = CategoricalIndex(["a", "b"], categories=["a", "b"], ordered=True)
|
|
ci2 = CategoricalIndex(["a", "b"], categories=["a", "b", "c"], ordered=True)
|
|
|
|
assert ci1.equals(ci1)
|
|
assert not ci1.equals(ci2)
|
|
assert ci1.equals(ci1.astype(object))
|
|
assert ci1.astype(object).equals(ci1)
|
|
|
|
assert (ci1 == ci1).all()
|
|
assert not (ci1 != ci1).all()
|
|
assert not (ci1 > ci1).all()
|
|
assert not (ci1 < ci1).all()
|
|
assert (ci1 <= ci1).all()
|
|
assert (ci1 >= ci1).all()
|
|
|
|
assert not (ci1 == 1).all()
|
|
assert (ci1 == Index(["a", "b"])).all()
|
|
assert (ci1 == ci1.values).all()
|
|
|
|
# invalid comparisons
|
|
with pytest.raises(ValueError, match="Lengths must match"):
|
|
ci1 == Index(["a", "b", "c"])
|
|
|
|
msg = "Categoricals can only be compared if 'categories' are the same"
|
|
with pytest.raises(TypeError, match=msg):
|
|
ci1 == ci2
|
|
with pytest.raises(TypeError, match=msg):
|
|
ci1 == Categorical(ci1.values, ordered=False)
|
|
with pytest.raises(TypeError, match=msg):
|
|
ci1 == Categorical(ci1.values, categories=list("abc"))
|
|
|
|
# tests
|
|
# make sure that we are testing for category inclusion properly
|
|
ci = CategoricalIndex(list("aabca"), categories=["c", "a", "b"])
|
|
assert not ci.equals(list("aabca"))
|
|
# Same categories, but different order
|
|
# Unordered
|
|
assert ci.equals(CategoricalIndex(list("aabca")))
|
|
# Ordered
|
|
assert not ci.equals(CategoricalIndex(list("aabca"), ordered=True))
|
|
assert ci.equals(ci.copy())
|
|
|
|
ci = CategoricalIndex(list("aabca") + [np.nan], categories=["c", "a", "b"])
|
|
assert not ci.equals(list("aabca"))
|
|
assert not ci.equals(CategoricalIndex(list("aabca")))
|
|
assert ci.equals(ci.copy())
|
|
|
|
ci = CategoricalIndex(list("aabca") + [np.nan], categories=["c", "a", "b"])
|
|
assert not ci.equals(list("aabca") + [np.nan])
|
|
assert ci.equals(CategoricalIndex(list("aabca") + [np.nan]))
|
|
assert not ci.equals(CategoricalIndex(list("aabca") + [np.nan], ordered=True))
|
|
assert ci.equals(ci.copy())
|
|
|
|
def test_equals_categorical_unordered(self):
|
|
# https://github.com/pandas-dev/pandas/issues/16603
|
|
a = CategoricalIndex(["A"], categories=["A", "B"])
|
|
b = CategoricalIndex(["A"], categories=["B", "A"])
|
|
c = CategoricalIndex(["C"], categories=["B", "A"])
|
|
assert a.equals(b)
|
|
assert not a.equals(c)
|
|
assert not b.equals(c)
|
|
|
|
def test_equals_non_category(self):
|
|
# GH#37667 Case where other contains a value not among ci's
|
|
# categories ("D") and also contains np.nan
|
|
ci = CategoricalIndex(["A", "B", np.nan, np.nan])
|
|
other = Index(["A", "B", "D", np.nan])
|
|
|
|
assert not ci.equals(other)
|
|
|
|
def test_equals_multiindex(self):
|
|
# dont raise NotImplementedError when calling is_dtype_compat
|
|
|
|
mi = MultiIndex.from_arrays([["A", "B", "C", "D"], range(4)])
|
|
ci = mi.to_flat_index().astype("category")
|
|
|
|
assert not ci.equals(mi)
|