Inzynierka/Lib/site-packages/pandas/tests/io/json/test_readlines.py
2023-06-02 12:51:02 +02:00

521 lines
18 KiB
Python

from io import StringIO
from pathlib import Path
from typing import Iterator
import pytest
import pandas as pd
from pandas import (
DataFrame,
read_json,
)
import pandas._testing as tm
from pandas.io.json._json import JsonReader
@pytest.fixture
def lines_json_df():
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
return df.to_json(lines=True, orient="records")
def test_read_jsonl():
# GH9180
result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True)
expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
def test_read_jsonl_engine_pyarrow(datapath, engine):
result = read_json(
datapath("io", "json", "data", "line_delimited.json"),
lines=True,
engine=engine,
)
expected = DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
tm.assert_frame_equal(result, expected)
def test_read_datetime(request, engine):
# GH33787
if engine == "pyarrow":
# GH 48893
reason = "Pyarrow only supports a file path as an input and line delimited json"
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
df = DataFrame(
[([1, 2], ["2020-03-05", "2020-04-08T09:58:49+00:00"], "hector")],
columns=["accounts", "date", "name"],
)
json_line = df.to_json(lines=True, orient="records")
result = read_json(json_line, engine=engine)
expected = DataFrame(
[[1, "2020-03-05", "hector"], [2, "2020-04-08T09:58:49+00:00", "hector"]],
columns=["accounts", "date", "name"],
)
tm.assert_frame_equal(result, expected)
def test_read_jsonl_unicode_chars():
# GH15132: non-ascii unicode characters
# \u201d == RIGHT DOUBLE QUOTATION MARK
# simulate file handle
json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
json = StringIO(json)
result = read_json(json, lines=True)
expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
# simulate string
json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
result = read_json(json, lines=True)
expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
def test_to_jsonl():
# GH9180
df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
result = df.to_json(orient="records", lines=True)
expected = '{"a":1,"b":2}\n{"a":1,"b":2}\n'
assert result == expected
df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"])
result = df.to_json(orient="records", lines=True)
expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}\n'
assert result == expected
tm.assert_frame_equal(read_json(result, lines=True), df)
# GH15096: escaped characters in columns and data
df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"])
result = df.to_json(orient="records", lines=True)
expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}\n'
assert result == expected
tm.assert_frame_equal(read_json(result, lines=True), df)
def test_to_jsonl_count_new_lines():
# GH36888
df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
actual_new_lines_count = df.to_json(orient="records", lines=True).count("\n")
expected_new_lines_count = 2
assert actual_new_lines_count == expected_new_lines_count
@pytest.mark.parametrize("chunksize", [1, 1.0])
def test_readjson_chunks(request, lines_json_df, chunksize, engine):
# Basic test that read_json(chunks=True) gives the same result as
# read_json(chunks=False)
# GH17048: memory usage when lines=True
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
unchunked = read_json(StringIO(lines_json_df), lines=True)
with read_json(
StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine
) as reader:
chunked = pd.concat(reader)
tm.assert_frame_equal(chunked, unchunked)
def test_readjson_chunksize_requires_lines(lines_json_df, engine):
msg = "chunksize can only be passed if lines=True"
with pytest.raises(ValueError, match=msg):
with read_json(
StringIO(lines_json_df), lines=False, chunksize=2, engine=engine
) as _:
pass
def test_readjson_chunks_series(request, engine):
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason))
# Test reading line-format JSON to Series with chunksize param
s = pd.Series({"A": 1, "B": 2})
strio = StringIO(s.to_json(lines=True, orient="records"))
unchunked = read_json(strio, lines=True, typ="Series", engine=engine)
strio = StringIO(s.to_json(lines=True, orient="records"))
with read_json(
strio, lines=True, typ="Series", chunksize=1, engine=engine
) as reader:
chunked = pd.concat(reader)
tm.assert_series_equal(chunked, unchunked)
def test_readjson_each_chunk(request, lines_json_df, engine):
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
# Other tests check that the final result of read_json(chunksize=True)
# is correct. This checks the intermediate chunks.
with read_json(
StringIO(lines_json_df), lines=True, chunksize=2, engine=engine
) as reader:
chunks = list(reader)
assert chunks[0].shape == (2, 2)
assert chunks[1].shape == (1, 2)
def test_readjson_chunks_from_file(request, engine):
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
with tm.ensure_clean("test.json") as path:
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df.to_json(path, lines=True, orient="records")
with read_json(path, lines=True, chunksize=1, engine=engine) as reader:
chunked = pd.concat(reader)
unchunked = read_json(path, lines=True, engine=engine)
tm.assert_frame_equal(unchunked, chunked)
@pytest.mark.parametrize("chunksize", [None, 1])
def test_readjson_chunks_closes(chunksize):
with tm.ensure_clean("test.json") as path:
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df.to_json(path, lines=True, orient="records")
reader = JsonReader(
path,
orient=None,
typ="frame",
dtype=True,
convert_axes=True,
convert_dates=True,
keep_default_dates=True,
precise_float=False,
date_unit=None,
encoding=None,
lines=True,
chunksize=chunksize,
compression=None,
nrows=None,
)
with reader:
reader.read()
assert (
reader.handles.handle.closed
), f"didn't close stream with chunksize = {chunksize}"
@pytest.mark.parametrize("chunksize", [0, -1, 2.2, "foo"])
def test_readjson_invalid_chunksize(lines_json_df, chunksize, engine):
msg = r"'chunksize' must be an integer >=1"
with pytest.raises(ValueError, match=msg):
with read_json(
StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine
) as _:
pass
@pytest.mark.parametrize("chunksize", [None, 1, 2])
def test_readjson_chunks_multiple_empty_lines(chunksize):
j = """
{"A":1,"B":4}
{"A":2,"B":5}
{"A":3,"B":6}
"""
orig = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
test = read_json(j, lines=True, chunksize=chunksize)
if chunksize is not None:
with test:
test = pd.concat(test)
tm.assert_frame_equal(orig, test, obj=f"chunksize: {chunksize}")
def test_readjson_unicode(request, monkeypatch, engine):
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
with tm.ensure_clean("test.json") as path:
monkeypatch.setattr("locale.getpreferredencoding", lambda do_setlocale: "cp949")
with open(path, "w", encoding="utf-8") as f:
f.write('{"£©µÀÆÖÞßéöÿ":["АБВГДабвгд가"]}')
result = read_json(path, engine=engine)
expected = DataFrame({"£©µÀÆÖÞßéöÿ": ["АБВГДабвгд가"]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("nrows", [1, 2])
def test_readjson_nrows(nrows, engine):
# GH 33916
# Test reading line-format JSON to Series with nrows param
jsonl = """{"a": 1, "b": 2}
{"a": 3, "b": 4}
{"a": 5, "b": 6}
{"a": 7, "b": 8}"""
result = read_json(jsonl, lines=True, nrows=nrows)
expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("nrows,chunksize", [(2, 2), (4, 2)])
def test_readjson_nrows_chunks(request, nrows, chunksize, engine):
# GH 33916
# Test reading line-format JSON to Series with nrows and chunksize param
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
jsonl = """{"a": 1, "b": 2}
{"a": 3, "b": 4}
{"a": 5, "b": 6}
{"a": 7, "b": 8}"""
with read_json(
jsonl, lines=True, nrows=nrows, chunksize=chunksize, engine=engine
) as reader:
chunked = pd.concat(reader)
expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows]
tm.assert_frame_equal(chunked, expected)
def test_readjson_nrows_requires_lines(engine):
# GH 33916
# Test ValuError raised if nrows is set without setting lines in read_json
jsonl = """{"a": 1, "b": 2}
{"a": 3, "b": 4}
{"a": 5, "b": 6}
{"a": 7, "b": 8}"""
msg = "nrows can only be passed if lines=True"
with pytest.raises(ValueError, match=msg):
read_json(jsonl, lines=False, nrows=2, engine=engine)
def test_readjson_lines_chunks_fileurl(request, datapath, engine):
# GH 27135
# Test reading line-format JSON from file url
if engine == "pyarrow":
# GH 48893
reason = (
"Pyarrow only supports a file path as an input and line delimited json"
"and doesn't support chunksize parameter."
)
request.node.add_marker(pytest.mark.xfail(reason=reason, raises=ValueError))
df_list_expected = [
DataFrame([[1, 2]], columns=["a", "b"], index=[0]),
DataFrame([[3, 4]], columns=["a", "b"], index=[1]),
DataFrame([[5, 6]], columns=["a", "b"], index=[2]),
]
os_path = datapath("io", "json", "data", "line_delimited.json")
file_url = Path(os_path).as_uri()
with read_json(file_url, lines=True, chunksize=1, engine=engine) as url_reader:
for index, chuck in enumerate(url_reader):
tm.assert_frame_equal(chuck, df_list_expected[index])
def test_chunksize_is_incremental():
# See https://github.com/pandas-dev/pandas/issues/34548
jsonl = (
"""{"a": 1, "b": 2}
{"a": 3, "b": 4}
{"a": 5, "b": 6}
{"a": 7, "b": 8}\n"""
* 1000
)
class MyReader:
def __init__(self, contents) -> None:
self.read_count = 0
self.stringio = StringIO(contents)
def read(self, *args):
self.read_count += 1
return self.stringio.read(*args)
def __iter__(self) -> Iterator:
self.read_count += 1
return iter(self.stringio)
reader = MyReader(jsonl)
assert len(list(read_json(reader, lines=True, chunksize=100))) > 1
assert reader.read_count > 10
@pytest.mark.parametrize("orient_", ["split", "index", "table"])
def test_to_json_append_orient(orient_):
# GH 35849
# Test ValueError when orient is not 'records'
df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
msg = (
r"mode='a' \(append\) is only supported when"
"lines is True and orient is 'records'"
)
with pytest.raises(ValueError, match=msg):
df.to_json(mode="a", orient=orient_)
def test_to_json_append_lines():
# GH 35849
# Test ValueError when lines is not True
df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
msg = (
r"mode='a' \(append\) is only supported when"
"lines is True and orient is 'records'"
)
with pytest.raises(ValueError, match=msg):
df.to_json(mode="a", lines=False, orient="records")
@pytest.mark.parametrize("mode_", ["r", "x"])
def test_to_json_append_mode(mode_):
# GH 35849
# Test ValueError when mode is not supported option
df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
msg = (
f"mode={mode_} is not a valid option."
"Only 'w' and 'a' are currently supported."
)
with pytest.raises(ValueError, match=msg):
df.to_json(mode=mode_, lines=False, orient="records")
def test_to_json_append_output_consistent_columns():
# GH 35849
# Testing that resulting output reads in as expected.
# Testing same columns, new rows
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
expected = DataFrame({"col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"]})
with tm.ensure_clean("test.json") as path:
# Save dataframes to the same file
df1.to_json(path, lines=True, orient="records")
df2.to_json(path, mode="a", lines=True, orient="records")
# Read path file
result = read_json(path, lines=True)
tm.assert_frame_equal(result, expected)
def test_to_json_append_output_inconsistent_columns():
# GH 35849
# Testing that resulting output reads in as expected.
# Testing one new column, one old column, new rows
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
expected = DataFrame(
{
"col1": [1, 2, None, None],
"col2": ["a", "b", "e", "f"],
"col3": [None, None, "!", "#"],
}
)
with tm.ensure_clean("test.json") as path:
# Save dataframes to the same file
df1.to_json(path, mode="a", lines=True, orient="records")
df3.to_json(path, mode="a", lines=True, orient="records")
# Read path file
result = read_json(path, lines=True)
tm.assert_frame_equal(result, expected)
def test_to_json_append_output_different_columns():
# GH 35849
# Testing that resulting output reads in as expected.
# Testing same, differing and new columns
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
df4 = DataFrame({"col4": [True, False]})
expected = DataFrame(
{
"col1": [1, 2, 3, 4, None, None, None, None],
"col2": ["a", "b", "c", "d", "e", "f", None, None],
"col3": [None, None, None, None, "!", "#", None, None],
"col4": [None, None, None, None, None, None, True, False],
}
).astype({"col4": "float"})
with tm.ensure_clean("test.json") as path:
# Save dataframes to the same file
df1.to_json(path, mode="a", lines=True, orient="records")
df2.to_json(path, mode="a", lines=True, orient="records")
df3.to_json(path, mode="a", lines=True, orient="records")
df4.to_json(path, mode="a", lines=True, orient="records")
# Read path file
result = read_json(path, lines=True)
tm.assert_frame_equal(result, expected)
def test_to_json_append_output_different_columns_reordered():
# GH 35849
# Testing that resulting output reads in as expected.
# Testing specific result column order.
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
df4 = DataFrame({"col4": [True, False]})
# df4, df3, df2, df1 (in that order)
expected = DataFrame(
{
"col4": [True, False, None, None, None, None, None, None],
"col2": [None, None, "e", "f", "c", "d", "a", "b"],
"col3": [None, None, "!", "#", None, None, None, None],
"col1": [None, None, None, None, 3, 4, 1, 2],
}
).astype({"col4": "float"})
with tm.ensure_clean("test.json") as path:
# Save dataframes to the same file
df4.to_json(path, mode="a", lines=True, orient="records")
df3.to_json(path, mode="a", lines=True, orient="records")
df2.to_json(path, mode="a", lines=True, orient="records")
df1.to_json(path, mode="a", lines=True, orient="records")
# Read path file
result = read_json(path, lines=True)
tm.assert_frame_equal(result, expected)