356 lines
10 KiB
Python
356 lines
10 KiB
Python
"""
|
|
Tests that the specified index column (a.k.a "index_col")
|
|
is properly handled or inferred during parsing for all of
|
|
the parsers defined in parsers.py
|
|
"""
|
|
from io import StringIO
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
# TODO(1.4): Change me to xfails at release time
|
|
skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip")
|
|
|
|
|
|
@pytest.mark.parametrize("with_header", [True, False])
|
|
def test_index_col_named(all_parsers, with_header):
|
|
parser = all_parsers
|
|
no_header = """\
|
|
KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
|
|
KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
|
|
KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
|
|
KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
|
|
KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
|
|
KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000"""
|
|
header = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n"
|
|
|
|
if with_header:
|
|
data = header + no_header
|
|
|
|
result = parser.read_csv(StringIO(data), index_col="ID")
|
|
expected = parser.read_csv(StringIO(data), header=0).set_index("ID")
|
|
tm.assert_frame_equal(result, expected)
|
|
else:
|
|
data = no_header
|
|
msg = "Index ID invalid"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
parser.read_csv(StringIO(data), index_col="ID")
|
|
|
|
|
|
def test_index_col_named2(all_parsers):
|
|
parser = all_parsers
|
|
data = """\
|
|
1,2,3,4,hello
|
|
5,6,7,8,world
|
|
9,10,11,12,foo
|
|
"""
|
|
|
|
expected = DataFrame(
|
|
{"a": [1, 5, 9], "b": [2, 6, 10], "c": [3, 7, 11], "d": [4, 8, 12]},
|
|
index=Index(["hello", "world", "foo"], name="message"),
|
|
)
|
|
names = ["a", "b", "c", "d", "message"]
|
|
|
|
result = parser.read_csv(StringIO(data), names=names, index_col=["message"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_index_col_is_true(all_parsers):
|
|
# see gh-9798
|
|
data = "a,b\n1,2"
|
|
parser = all_parsers
|
|
|
|
msg = "The value of index_col couldn't be 'True'"
|
|
with pytest.raises(ValueError, match=msg):
|
|
parser.read_csv(StringIO(data), index_col=True)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_infer_index_col(all_parsers):
|
|
data = """A,B,C
|
|
foo,1,2,3
|
|
bar,4,5,6
|
|
baz,7,8,9
|
|
"""
|
|
parser = all_parsers
|
|
result = parser.read_csv(StringIO(data))
|
|
|
|
expected = DataFrame(
|
|
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
index=["foo", "bar", "baz"],
|
|
columns=["A", "B", "C"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
@pytest.mark.parametrize(
|
|
"index_col,kwargs",
|
|
[
|
|
(None, {"columns": ["x", "y", "z"]}),
|
|
(False, {"columns": ["x", "y", "z"]}),
|
|
(0, {"columns": ["y", "z"], "index": Index([], name="x")}),
|
|
(1, {"columns": ["x", "z"], "index": Index([], name="y")}),
|
|
("x", {"columns": ["y", "z"], "index": Index([], name="x")}),
|
|
("y", {"columns": ["x", "z"], "index": Index([], name="y")}),
|
|
(
|
|
[0, 1],
|
|
{
|
|
"columns": ["z"],
|
|
"index": MultiIndex.from_arrays([[]] * 2, names=["x", "y"]),
|
|
},
|
|
),
|
|
(
|
|
["x", "y"],
|
|
{
|
|
"columns": ["z"],
|
|
"index": MultiIndex.from_arrays([[]] * 2, names=["x", "y"]),
|
|
},
|
|
),
|
|
(
|
|
[1, 0],
|
|
{
|
|
"columns": ["z"],
|
|
"index": MultiIndex.from_arrays([[]] * 2, names=["y", "x"]),
|
|
},
|
|
),
|
|
(
|
|
["y", "x"],
|
|
{
|
|
"columns": ["z"],
|
|
"index": MultiIndex.from_arrays([[]] * 2, names=["y", "x"]),
|
|
},
|
|
),
|
|
],
|
|
)
|
|
def test_index_col_empty_data(all_parsers, index_col, kwargs):
|
|
data = "x,y,z"
|
|
parser = all_parsers
|
|
result = parser.read_csv(StringIO(data), index_col=index_col)
|
|
|
|
expected = DataFrame(**kwargs)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_empty_with_index_col_false(all_parsers):
|
|
# see gh-10413
|
|
data = "x,y"
|
|
parser = all_parsers
|
|
result = parser.read_csv(StringIO(data), index_col=False)
|
|
|
|
expected = DataFrame(columns=["x", "y"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
@pytest.mark.parametrize(
|
|
"index_names",
|
|
[
|
|
["", ""],
|
|
["foo", ""],
|
|
["", "bar"],
|
|
["foo", "bar"],
|
|
["NotReallyUnnamed", "Unnamed: 0"],
|
|
],
|
|
)
|
|
def test_multi_index_naming(all_parsers, index_names):
|
|
parser = all_parsers
|
|
|
|
# We don't want empty index names being replaced with "Unnamed: 0"
|
|
data = ",".join(index_names + ["col\na,c,1\na,d,2\nb,c,3\nb,d,4"])
|
|
result = parser.read_csv(StringIO(data), index_col=[0, 1])
|
|
|
|
expected = DataFrame(
|
|
{"col": [1, 2, 3, 4]}, index=MultiIndex.from_product([["a", "b"], ["c", "d"]])
|
|
)
|
|
expected.index.names = [name if name else None for name in index_names]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_multi_index_naming_not_all_at_beginning(all_parsers):
|
|
parser = all_parsers
|
|
data = ",Unnamed: 2,\na,c,1\na,d,2\nb,c,3\nb,d,4"
|
|
result = parser.read_csv(StringIO(data), index_col=[0, 2])
|
|
|
|
expected = DataFrame(
|
|
{"Unnamed: 2": ["c", "d", "c", "d"]},
|
|
index=MultiIndex(
|
|
levels=[["a", "b"], [1, 2, 3, 4]], codes=[[0, 0, 1, 1], [0, 1, 2, 3]]
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_no_multi_index_level_names_empty(all_parsers):
|
|
# GH 10984
|
|
parser = all_parsers
|
|
midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)])
|
|
expected = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"])
|
|
with tm.ensure_clean() as path:
|
|
expected.to_csv(path)
|
|
result = parser.read_csv(path, index_col=[0, 1, 2])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_header_with_index_col(all_parsers):
|
|
# GH 33476
|
|
parser = all_parsers
|
|
data = """
|
|
I11,A,A
|
|
I12,B,B
|
|
I2,1,3
|
|
"""
|
|
midx = MultiIndex.from_tuples([("A", "B"), ("A", "B.1")], names=["I11", "I12"])
|
|
idx = Index(["I2"])
|
|
expected = DataFrame([[1, 3]], index=idx, columns=midx)
|
|
|
|
result = parser.read_csv(StringIO(data), index_col=0, header=[0, 1])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
col_idx = Index(["A", "A.1"])
|
|
idx = Index(["I12", "I2"], name="I11")
|
|
expected = DataFrame([["B", "B"], ["1", "3"]], index=idx, columns=col_idx)
|
|
|
|
result = parser.read_csv(StringIO(data), index_col="I11", header=0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_index_col_large_csv(all_parsers):
|
|
# https://github.com/pandas-dev/pandas/issues/37094
|
|
parser = all_parsers
|
|
|
|
N = 1_000_001
|
|
df = DataFrame({"a": range(N), "b": np.random.randn(N)})
|
|
|
|
with tm.ensure_clean() as path:
|
|
df.to_csv(path, index=False)
|
|
result = parser.read_csv(path, index_col=[0])
|
|
|
|
tm.assert_frame_equal(result, df.set_index("a"))
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_index_col_multiindex_columns_no_data(all_parsers):
|
|
# GH#38292
|
|
parser = all_parsers
|
|
result = parser.read_csv(
|
|
StringIO("a0,a1,a2\nb0,b1,b2\n"), header=[0, 1], index_col=0
|
|
)
|
|
expected = DataFrame(
|
|
[],
|
|
index=Index([]),
|
|
columns=MultiIndex.from_arrays(
|
|
[["a1", "a2"], ["b1", "b2"]], names=["a0", "b0"]
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_index_col_header_no_data(all_parsers):
|
|
# GH#38292
|
|
parser = all_parsers
|
|
result = parser.read_csv(StringIO("a0,a1,a2\n"), header=[0], index_col=0)
|
|
expected = DataFrame(
|
|
[],
|
|
columns=["a1", "a2"],
|
|
index=Index([], name="a0"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_multiindex_columns_no_data(all_parsers):
|
|
# GH#38292
|
|
parser = all_parsers
|
|
result = parser.read_csv(StringIO("a0,a1,a2\nb0,b1,b2\n"), header=[0, 1])
|
|
expected = DataFrame(
|
|
[], columns=MultiIndex.from_arrays([["a0", "a1", "a2"], ["b0", "b1", "b2"]])
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_multiindex_columns_index_col_with_data(all_parsers):
|
|
# GH#38292
|
|
parser = all_parsers
|
|
result = parser.read_csv(
|
|
StringIO("a0,a1,a2\nb0,b1,b2\ndata,data,data"), header=[0, 1], index_col=0
|
|
)
|
|
expected = DataFrame(
|
|
[["data", "data"]],
|
|
columns=MultiIndex.from_arrays(
|
|
[["a1", "a2"], ["b1", "b2"]], names=["a0", "b0"]
|
|
),
|
|
index=Index(["data"]),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_infer_types_boolean_sum(all_parsers):
|
|
# GH#44079
|
|
parser = all_parsers
|
|
result = parser.read_csv(
|
|
StringIO("0,1"),
|
|
names=["a", "b"],
|
|
index_col=["a"],
|
|
dtype={"a": "UInt8"},
|
|
)
|
|
expected = DataFrame(
|
|
data={
|
|
"a": [
|
|
0,
|
|
],
|
|
"b": [1],
|
|
}
|
|
).set_index("a")
|
|
# Not checking index type now, because the C parser will return a
|
|
# index column of dtype 'object', and the Python parser will return a
|
|
# index column of dtype 'int64'.
|
|
tm.assert_frame_equal(result, expected, check_index_type=False)
|
|
|
|
|
|
@skip_pyarrow
|
|
@pytest.mark.parametrize("dtype, val", [(object, "01"), ("int64", 1)])
|
|
def test_specify_dtype_for_index_col(all_parsers, dtype, val):
|
|
# GH#9435
|
|
data = "a,b\n01,2"
|
|
parser = all_parsers
|
|
result = parser.read_csv(StringIO(data), index_col="a", dtype={"a": dtype})
|
|
expected = DataFrame({"b": [2]}, index=Index([val], name="a"))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@skip_pyarrow
|
|
def test_multiindex_columns_not_leading_index_col(all_parsers):
|
|
# GH#38549
|
|
parser = all_parsers
|
|
data = """a,b,c,d
|
|
e,f,g,h
|
|
x,y,1,2
|
|
"""
|
|
result = parser.read_csv(
|
|
StringIO(data),
|
|
header=[0, 1],
|
|
index_col=1,
|
|
)
|
|
cols = MultiIndex.from_tuples(
|
|
[("a", "e"), ("c", "g"), ("d", "h")], names=["b", "f"]
|
|
)
|
|
expected = DataFrame([["x", 1, 2]], columns=cols, index=["y"])
|
|
tm.assert_frame_equal(result, expected)
|