643 lines
19 KiB
Python
643 lines
19 KiB
Python
from textwrap import dedent
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import is_platform_windows
|
|
from pandas.util._test_decorators import async_mark
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
Series,
|
|
TimedeltaIndex,
|
|
Timestamp,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.indexes.datetimes import date_range
|
|
|
|
test_frame = DataFrame(
|
|
{"A": [1] * 20 + [2] * 12 + [3] * 8, "B": np.arange(40)},
|
|
index=date_range("1/1/2000", freq="s", periods=40),
|
|
)
|
|
|
|
|
|
@async_mark()
|
|
async def test_tab_complete_ipython6_warning(ip):
|
|
from IPython.core.completer import provisionalcompleter
|
|
|
|
code = dedent(
|
|
"""\
|
|
import pandas._testing as tm
|
|
s = tm.makeTimeSeries()
|
|
rs = s.resample("D")
|
|
"""
|
|
)
|
|
await ip.run_code(code)
|
|
|
|
# GH 31324 newer jedi version raises Deprecation warning;
|
|
# appears resolved 2021-02-02
|
|
with tm.assert_produces_warning(None):
|
|
with provisionalcompleter("ignore"):
|
|
list(ip.Completer.completions("rs.", 1))
|
|
|
|
|
|
def test_deferred_with_groupby():
|
|
# GH 12486
|
|
# support deferred resample ops with groupby
|
|
data = [
|
|
["2010-01-01", "A", 2],
|
|
["2010-01-02", "A", 3],
|
|
["2010-01-05", "A", 8],
|
|
["2010-01-10", "A", 7],
|
|
["2010-01-13", "A", 3],
|
|
["2010-01-01", "B", 5],
|
|
["2010-01-03", "B", 2],
|
|
["2010-01-04", "B", 1],
|
|
["2010-01-11", "B", 7],
|
|
["2010-01-14", "B", 3],
|
|
]
|
|
|
|
df = DataFrame(data, columns=["date", "id", "score"])
|
|
df.date = pd.to_datetime(df.date)
|
|
|
|
def f_0(x):
|
|
return x.set_index("date").resample("D").asfreq()
|
|
|
|
expected = df.groupby("id").apply(f_0)
|
|
result = df.set_index("date").groupby("id").resample("D").asfreq()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = DataFrame(
|
|
{
|
|
"date": date_range(start="2016-01-01", periods=4, freq="W"),
|
|
"group": [1, 1, 2, 2],
|
|
"val": [5, 6, 7, 8],
|
|
}
|
|
).set_index("date")
|
|
|
|
def f_1(x):
|
|
return x.resample("1D").ffill()
|
|
|
|
expected = df.groupby("group").apply(f_1)
|
|
result = df.groupby("group").resample("1D").ffill()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_getitem():
|
|
g = test_frame.groupby("A")
|
|
|
|
expected = g.B.apply(lambda x: x.resample("2s").mean())
|
|
|
|
result = g.resample("2s").B.mean()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = g.B.resample("2s").mean()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = g.resample("2s").mean().B
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_getitem_multiple():
|
|
# GH 13174
|
|
# multiple calls after selection causing an issue with aliasing
|
|
data = [{"id": 1, "buyer": "A"}, {"id": 2, "buyer": "B"}]
|
|
df = DataFrame(data, index=date_range("2016-01-01", periods=2))
|
|
r = df.groupby("id").resample("1D")
|
|
result = r["buyer"].count()
|
|
expected = Series(
|
|
[1, 1],
|
|
index=pd.MultiIndex.from_tuples(
|
|
[(1, Timestamp("2016-01-01")), (2, Timestamp("2016-01-02"))],
|
|
names=["id", None],
|
|
),
|
|
name="buyer",
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = r["buyer"].count()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_groupby_resample_on_api_with_getitem():
|
|
# GH 17813
|
|
df = DataFrame(
|
|
{"id": list("aabbb"), "date": date_range("1-1-2016", periods=5), "data": 1}
|
|
)
|
|
exp = df.set_index("date").groupby("id").resample("2D")["data"].sum()
|
|
result = df.groupby("id").resample("2D", on="date")["data"].sum()
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_groupby_with_origin():
|
|
# GH 31809
|
|
|
|
freq = "1399min" # prime number that is smaller than 24h
|
|
start, end = "1/1/2000 00:00:00", "1/31/2000 00:00"
|
|
middle = "1/15/2000 00:00:00"
|
|
|
|
rng = date_range(start, end, freq="1231min") # prime number
|
|
ts = Series(np.random.randn(len(rng)), index=rng)
|
|
ts2 = ts[middle:end]
|
|
|
|
# proves that grouper without a fixed origin does not work
|
|
# when dealing with unusual frequencies
|
|
simple_grouper = pd.Grouper(freq=freq)
|
|
count_ts = ts.groupby(simple_grouper).agg("count")
|
|
count_ts = count_ts[middle:end]
|
|
count_ts2 = ts2.groupby(simple_grouper).agg("count")
|
|
with pytest.raises(AssertionError, match="Index are different"):
|
|
tm.assert_index_equal(count_ts.index, count_ts2.index)
|
|
|
|
# test origin on 1970-01-01 00:00:00
|
|
origin = Timestamp(0)
|
|
adjusted_grouper = pd.Grouper(freq=freq, origin=origin)
|
|
adjusted_count_ts = ts.groupby(adjusted_grouper).agg("count")
|
|
adjusted_count_ts = adjusted_count_ts[middle:end]
|
|
adjusted_count_ts2 = ts2.groupby(adjusted_grouper).agg("count")
|
|
tm.assert_series_equal(adjusted_count_ts, adjusted_count_ts2)
|
|
|
|
# test origin on 2049-10-18 20:00:00
|
|
origin_future = Timestamp(0) + pd.Timedelta("1399min") * 30_000
|
|
adjusted_grouper2 = pd.Grouper(freq=freq, origin=origin_future)
|
|
adjusted2_count_ts = ts.groupby(adjusted_grouper2).agg("count")
|
|
adjusted2_count_ts = adjusted2_count_ts[middle:end]
|
|
adjusted2_count_ts2 = ts2.groupby(adjusted_grouper2).agg("count")
|
|
tm.assert_series_equal(adjusted2_count_ts, adjusted2_count_ts2)
|
|
|
|
# both grouper use an adjusted timestamp that is a multiple of 1399 min
|
|
# they should be equals even if the adjusted_timestamp is in the future
|
|
tm.assert_series_equal(adjusted_count_ts, adjusted2_count_ts2)
|
|
|
|
|
|
def test_nearest():
|
|
# GH 17496
|
|
# Resample nearest
|
|
index = date_range("1/1/2000", periods=3, freq="T")
|
|
result = Series(range(3), index=index).resample("20s").nearest()
|
|
|
|
expected = Series(
|
|
[0, 0, 1, 1, 1, 2, 2],
|
|
index=pd.DatetimeIndex(
|
|
[
|
|
"2000-01-01 00:00:00",
|
|
"2000-01-01 00:00:20",
|
|
"2000-01-01 00:00:40",
|
|
"2000-01-01 00:01:00",
|
|
"2000-01-01 00:01:20",
|
|
"2000-01-01 00:01:40",
|
|
"2000-01-01 00:02:00",
|
|
],
|
|
dtype="datetime64[ns]",
|
|
freq="20S",
|
|
),
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
"first",
|
|
"last",
|
|
"median",
|
|
"sem",
|
|
"sum",
|
|
"mean",
|
|
"min",
|
|
"max",
|
|
"size",
|
|
"count",
|
|
"nearest",
|
|
"bfill",
|
|
"ffill",
|
|
"asfreq",
|
|
"ohlc",
|
|
],
|
|
)
|
|
def test_methods(f):
|
|
g = test_frame.groupby("A")
|
|
r = g.resample("2s")
|
|
|
|
result = getattr(r, f)()
|
|
expected = g.apply(lambda x: getattr(x.resample("2s"), f)())
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
def test_methods_nunique():
|
|
# series only
|
|
g = test_frame.groupby("A")
|
|
r = g.resample("2s")
|
|
result = r.B.nunique()
|
|
expected = g.B.apply(lambda x: x.resample("2s").nunique())
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("f", ["std", "var"])
|
|
def test_methods_std_var(f):
|
|
g = test_frame.groupby("A")
|
|
r = g.resample("2s")
|
|
result = getattr(r, f)(ddof=1)
|
|
expected = g.apply(lambda x: getattr(x.resample("2s"), f)(ddof=1))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_apply():
|
|
g = test_frame.groupby("A")
|
|
r = g.resample("2s")
|
|
|
|
# reduction
|
|
expected = g.resample("2s").sum()
|
|
|
|
def f_0(x):
|
|
return x.resample("2s").sum()
|
|
|
|
result = r.apply(f_0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def f_1(x):
|
|
return x.resample("2s").apply(lambda y: y.sum())
|
|
|
|
result = g.apply(f_1)
|
|
# y.sum() results in int64 instead of int32 on 32-bit architectures
|
|
expected = expected.astype("int64")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_apply_with_mutated_index():
|
|
# GH 15169
|
|
index = date_range("1-1-2015", "12-31-15", freq="D")
|
|
df = DataFrame(data={"col1": np.random.rand(len(index))}, index=index)
|
|
|
|
def f(x):
|
|
s = Series([1, 2], index=["a", "b"])
|
|
return s
|
|
|
|
expected = df.groupby(pd.Grouper(freq="M")).apply(f)
|
|
|
|
result = df.resample("M").apply(f)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# A case for series
|
|
expected = df["col1"].groupby(pd.Grouper(freq="M"), group_keys=False).apply(f)
|
|
result = df["col1"].resample("M").apply(f)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_columns_multilevel():
|
|
# GH 16231
|
|
cols = pd.MultiIndex.from_tuples([("A", "a", "", "one"), ("B", "b", "i", "two")])
|
|
ind = date_range(start="2017-01-01", freq="15Min", periods=8)
|
|
df = DataFrame(np.array([0] * 16).reshape(8, 2), index=ind, columns=cols)
|
|
agg_dict = {col: (np.sum if col[3] == "one" else np.mean) for col in df.columns}
|
|
result = df.resample("H").apply(lambda x: agg_dict[x.name](x))
|
|
expected = DataFrame(
|
|
2 * [[0, 0.0]],
|
|
index=date_range(start="2017-01-01", freq="1H", periods=2),
|
|
columns=pd.MultiIndex.from_tuples(
|
|
[("A", "a", "", "one"), ("B", "b", "i", "two")]
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_groupby_with_label():
|
|
# GH 13235
|
|
index = date_range("2000-01-01", freq="2D", periods=5)
|
|
df = DataFrame(index=index, data={"col0": [0, 0, 1, 1, 2], "col1": [1, 1, 1, 1, 1]})
|
|
result = df.groupby("col0").resample("1W", label="left").sum()
|
|
|
|
mi = [
|
|
np.array([0, 0, 1, 2], dtype=np.int64),
|
|
pd.to_datetime(
|
|
np.array(["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"])
|
|
),
|
|
]
|
|
mindex = pd.MultiIndex.from_arrays(mi, names=["col0", None])
|
|
expected = DataFrame(
|
|
data={"col0": [0, 0, 2, 2], "col1": [1, 1, 2, 1]}, index=mindex
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_consistency_with_window():
|
|
# consistent return values with window
|
|
df = test_frame
|
|
expected = Index([1, 2, 3], name="A")
|
|
result = df.groupby("A").resample("2s").mean()
|
|
assert result.index.nlevels == 2
|
|
tm.assert_index_equal(result.index.levels[0], expected)
|
|
|
|
result = df.groupby("A").rolling(20).mean()
|
|
assert result.index.nlevels == 2
|
|
tm.assert_index_equal(result.index.levels[0], expected)
|
|
|
|
|
|
def test_median_duplicate_columns():
|
|
# GH 14233
|
|
|
|
df = DataFrame(
|
|
np.random.randn(20, 3),
|
|
columns=list("aaa"),
|
|
index=date_range("2012-01-01", periods=20, freq="s"),
|
|
)
|
|
df2 = df.copy()
|
|
df2.columns = ["a", "b", "c"]
|
|
expected = df2.resample("5s").median()
|
|
result = df.resample("5s").median()
|
|
expected.columns = result.columns
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_apply_to_one_column_of_df():
|
|
# GH: 36951
|
|
df = DataFrame(
|
|
{"col": range(10), "col1": range(10, 20)},
|
|
index=date_range("2012-01-01", periods=10, freq="20min"),
|
|
)
|
|
|
|
# access "col" via getattr -> make sure we handle AttributeError
|
|
result = df.resample("H").apply(lambda group: group.col.sum())
|
|
expected = Series(
|
|
[3, 12, 21, 9], index=date_range("2012-01-01", periods=4, freq="H")
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# access "col" via _getitem__ -> make sure we handle KeyErrpr
|
|
result = df.resample("H").apply(lambda group: group["col"].sum())
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_resample_groupby_agg():
|
|
# GH: 33548
|
|
df = DataFrame(
|
|
{
|
|
"cat": [
|
|
"cat_1",
|
|
"cat_1",
|
|
"cat_2",
|
|
"cat_1",
|
|
"cat_2",
|
|
"cat_1",
|
|
"cat_2",
|
|
"cat_1",
|
|
],
|
|
"num": [5, 20, 22, 3, 4, 30, 10, 50],
|
|
"date": [
|
|
"2019-2-1",
|
|
"2018-02-03",
|
|
"2020-3-11",
|
|
"2019-2-2",
|
|
"2019-2-2",
|
|
"2018-12-4",
|
|
"2020-3-11",
|
|
"2020-12-12",
|
|
],
|
|
}
|
|
)
|
|
df["date"] = pd.to_datetime(df["date"])
|
|
|
|
resampled = df.groupby("cat").resample("Y", on="date")
|
|
expected = resampled[["num"]].sum()
|
|
result = resampled.agg({"num": "sum"})
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_groupby_agg_listlike():
|
|
# GH 42905
|
|
ts = Timestamp("2021-02-28 00:00:00")
|
|
df = DataFrame({"class": ["beta"], "value": [69]}, index=Index([ts], name="date"))
|
|
resampled = df.groupby("class").resample("M")["value"]
|
|
result = resampled.agg(["sum", "size"])
|
|
expected = DataFrame(
|
|
[[69, 1]],
|
|
index=pd.MultiIndex.from_tuples([("beta", ts)], names=["class", "date"]),
|
|
columns=["sum", "size"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
|
|
def test_empty(keys):
|
|
# GH 26411
|
|
df = DataFrame([], columns=["a", "b"], index=TimedeltaIndex([]))
|
|
result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean()
|
|
expected = (
|
|
DataFrame(columns=["a", "b"])
|
|
.set_index(keys, drop=False)
|
|
.set_index(TimedeltaIndex([]), append=True)
|
|
)
|
|
if len(keys) == 1:
|
|
expected.index.name = keys[0]
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("consolidate", [True, False])
|
|
def test_resample_groupby_agg_object_dtype_all_nan(consolidate):
|
|
# https://github.com/pandas-dev/pandas/issues/39329
|
|
|
|
dates = date_range("2020-01-01", periods=15, freq="D")
|
|
df1 = DataFrame({"key": "A", "date": dates, "col1": range(15), "col_object": "val"})
|
|
df2 = DataFrame({"key": "B", "date": dates, "col1": range(15)})
|
|
df = pd.concat([df1, df2], ignore_index=True)
|
|
if consolidate:
|
|
df = df._consolidate()
|
|
|
|
result = df.groupby(["key"]).resample("W", on="date").min()
|
|
idx = pd.MultiIndex.from_arrays(
|
|
[
|
|
["A"] * 3 + ["B"] * 3,
|
|
pd.to_datetime(["2020-01-05", "2020-01-12", "2020-01-19"] * 2),
|
|
],
|
|
names=["key", "date"],
|
|
)
|
|
expected = DataFrame(
|
|
{
|
|
"key": ["A"] * 3 + ["B"] * 3,
|
|
"col1": [0, 5, 12] * 2,
|
|
"col_object": ["val"] * 3 + [np.nan] * 3,
|
|
},
|
|
index=idx,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_groupby_resample_with_list_of_keys():
|
|
# GH 47362
|
|
df = DataFrame(
|
|
data={
|
|
"date": date_range(start="2016-01-01", periods=8),
|
|
"group": [0, 0, 0, 0, 1, 1, 1, 1],
|
|
"val": [1, 7, 5, 2, 3, 10, 5, 1],
|
|
}
|
|
)
|
|
result = df.groupby("group").resample("2D", on="date")[["val"]].mean()
|
|
expected = DataFrame(
|
|
data={
|
|
"val": [4.0, 3.5, 6.5, 3.0],
|
|
},
|
|
index=Index(
|
|
data=[
|
|
(0, Timestamp("2016-01-01")),
|
|
(0, Timestamp("2016-01-03")),
|
|
(1, Timestamp("2016-01-05")),
|
|
(1, Timestamp("2016-01-07")),
|
|
],
|
|
name=("group", "date"),
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
|
|
def test_resample_no_index(keys):
|
|
# GH 47705
|
|
df = DataFrame([], columns=["a", "b", "date"])
|
|
df["date"] = pd.to_datetime(df["date"])
|
|
df = df.set_index("date")
|
|
result = df.groupby(keys).resample(rule=pd.to_timedelta("00:00:01")).mean()
|
|
expected = DataFrame(columns=["a", "b", "date"]).set_index(keys, drop=False)
|
|
expected["date"] = pd.to_datetime(expected["date"])
|
|
expected = expected.set_index("date", append=True, drop=True)
|
|
if len(keys) == 1:
|
|
expected.index.name = keys[0]
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_resample_no_columns():
|
|
# GH#52484
|
|
df = DataFrame(
|
|
index=Index(
|
|
pd.to_datetime(
|
|
["2018-01-01 00:00:00", "2018-01-01 12:00:00", "2018-01-02 00:00:00"]
|
|
),
|
|
name="date",
|
|
)
|
|
)
|
|
result = df.groupby([0, 0, 1]).resample(rule=pd.to_timedelta("06:00:00")).mean()
|
|
index = pd.to_datetime(
|
|
[
|
|
"2018-01-01 00:00:00",
|
|
"2018-01-01 06:00:00",
|
|
"2018-01-01 12:00:00",
|
|
"2018-01-02 00:00:00",
|
|
]
|
|
)
|
|
expected = DataFrame(
|
|
index=pd.MultiIndex(
|
|
levels=[np.array([0, 1], dtype=np.intp), index],
|
|
codes=[[0, 0, 0, 1], [0, 1, 2, 3]],
|
|
names=[None, "date"],
|
|
)
|
|
)
|
|
|
|
# GH#52710 - Index comes out as 32-bit on 64-bit Windows
|
|
tm.assert_frame_equal(result, expected, check_index_type=not is_platform_windows())
|
|
|
|
|
|
def test_groupby_resample_size_all_index_same():
|
|
# GH 46826
|
|
df = DataFrame(
|
|
{"A": [1] * 3 + [2] * 3 + [1] * 3 + [2] * 3, "B": np.arange(12)},
|
|
index=date_range("31/12/2000 18:00", freq="H", periods=12),
|
|
)
|
|
result = df.groupby("A").resample("D").size()
|
|
expected = Series(
|
|
3,
|
|
index=pd.MultiIndex.from_tuples(
|
|
[
|
|
(1, Timestamp("2000-12-31")),
|
|
(1, Timestamp("2001-01-01")),
|
|
(2, Timestamp("2000-12-31")),
|
|
(2, Timestamp("2001-01-01")),
|
|
],
|
|
names=["A", None],
|
|
),
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_groupby_resample_on_index_with_list_of_keys():
|
|
# GH 50840
|
|
df = DataFrame(
|
|
data={
|
|
"group": [0, 0, 0, 0, 1, 1, 1, 1],
|
|
"val": [3, 1, 4, 1, 5, 9, 2, 6],
|
|
},
|
|
index=Series(
|
|
date_range(start="2016-01-01", periods=8),
|
|
name="date",
|
|
),
|
|
)
|
|
result = df.groupby("group").resample("2D")[["val"]].mean()
|
|
expected = DataFrame(
|
|
data={
|
|
"val": [2.0, 2.5, 7.0, 4.0],
|
|
},
|
|
index=Index(
|
|
data=[
|
|
(0, Timestamp("2016-01-01")),
|
|
(0, Timestamp("2016-01-03")),
|
|
(1, Timestamp("2016-01-05")),
|
|
(1, Timestamp("2016-01-07")),
|
|
],
|
|
name=("group", "date"),
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_groupby_resample_on_index_with_list_of_keys_multi_columns():
|
|
# GH 50876
|
|
df = DataFrame(
|
|
data={
|
|
"group": [0, 0, 0, 0, 1, 1, 1, 1],
|
|
"first_val": [3, 1, 4, 1, 5, 9, 2, 6],
|
|
"second_val": [2, 7, 1, 8, 2, 8, 1, 8],
|
|
"third_val": [1, 4, 1, 4, 2, 1, 3, 5],
|
|
},
|
|
index=Series(
|
|
date_range(start="2016-01-01", periods=8),
|
|
name="date",
|
|
),
|
|
)
|
|
result = df.groupby("group").resample("2D")[["first_val", "second_val"]].mean()
|
|
expected = DataFrame(
|
|
data={
|
|
"first_val": [2.0, 2.5, 7.0, 4.0],
|
|
"second_val": [4.5, 4.5, 5.0, 4.5],
|
|
},
|
|
index=Index(
|
|
data=[
|
|
(0, Timestamp("2016-01-01")),
|
|
(0, Timestamp("2016-01-03")),
|
|
(1, Timestamp("2016-01-05")),
|
|
(1, Timestamp("2016-01-07")),
|
|
],
|
|
name=("group", "date"),
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_groupby_resample_on_index_with_list_of_keys_missing_column():
|
|
# GH 50876
|
|
df = DataFrame(
|
|
data={
|
|
"group": [0, 0, 0, 0, 1, 1, 1, 1],
|
|
"val": [3, 1, 4, 1, 5, 9, 2, 6],
|
|
},
|
|
index=Series(
|
|
date_range(start="2016-01-01", periods=8),
|
|
name="date",
|
|
),
|
|
)
|
|
with pytest.raises(KeyError, match="Columns not found"):
|
|
df.groupby("group").resample("2D")[["val_not_in_dataframe"]].mean()
|