Inzynierka/Lib/site-packages/pandas/tests/series/methods/test_asof.py
2023-06-02 12:51:02 +02:00

209 lines
6.1 KiB
Python

import numpy as np
import pytest
from pandas._libs.tslibs import IncompatibleFrequency
from pandas import (
DatetimeIndex,
Series,
Timestamp,
date_range,
isna,
notna,
offsets,
)
import pandas._testing as tm
class TestSeriesAsof:
def test_asof_nanosecond_index_access(self):
ts = Timestamp("20130101").as_unit("ns")._value
dti = DatetimeIndex([ts + 50 + i for i in range(100)])
ser = Series(np.random.randn(100), index=dti)
first_value = ser.asof(ser.index[0])
# GH#46903 previously incorrectly was "day"
assert dti.resolution == "nanosecond"
# this used to not work bc parsing was done by dateutil that didn't
# handle nanoseconds
assert first_value == ser["2013-01-01 00:00:00.000000050"]
expected_ts = np.datetime64("2013-01-01 00:00:00.000000050", "ns")
assert first_value == ser[Timestamp(expected_ts)]
def test_basic(self):
# array or list or dates
N = 50
rng = date_range("1/1/1990", periods=N, freq="53s")
ts = Series(np.random.randn(N), index=rng)
ts.iloc[15:30] = np.nan
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
result = ts.asof(dates)
assert notna(result).all()
lb = ts.index[14]
ub = ts.index[30]
result = ts.asof(list(dates))
assert notna(result).all()
lb = ts.index[14]
ub = ts.index[30]
mask = (result.index >= lb) & (result.index < ub)
rs = result[mask]
assert (rs == ts[lb]).all()
val = result[result.index[result.index >= ub][0]]
assert ts[ub] == val
def test_scalar(self):
N = 30
rng = date_range("1/1/1990", periods=N, freq="53s")
# Explicit cast to float avoid implicit cast when setting nan
ts = Series(np.arange(N), index=rng, dtype="float")
ts.iloc[5:10] = np.NaN
ts.iloc[15:20] = np.NaN
val1 = ts.asof(ts.index[7])
val2 = ts.asof(ts.index[19])
assert val1 == ts[4]
assert val2 == ts[14]
# accepts strings
val1 = ts.asof(str(ts.index[7]))
assert val1 == ts[4]
# in there
result = ts.asof(ts.index[3])
assert result == ts[3]
# no as of value
d = ts.index[0] - offsets.BDay()
assert np.isnan(ts.asof(d))
def test_with_nan(self):
# basic asof test
rng = date_range("1/1/2000", "1/2/2000", freq="4h")
s = Series(np.arange(len(rng)), index=rng)
r = s.resample("2h").mean()
result = r.asof(r.index)
expected = Series(
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.0],
index=date_range("1/1/2000", "1/2/2000", freq="2h"),
)
tm.assert_series_equal(result, expected)
r.iloc[3:5] = np.nan
result = r.asof(r.index)
expected = Series(
[0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.0],
index=date_range("1/1/2000", "1/2/2000", freq="2h"),
)
tm.assert_series_equal(result, expected)
r.iloc[-3:] = np.nan
result = r.asof(r.index)
expected = Series(
[0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.0],
index=date_range("1/1/2000", "1/2/2000", freq="2h"),
)
tm.assert_series_equal(result, expected)
def test_periodindex(self):
from pandas import (
PeriodIndex,
period_range,
)
# array or list or dates
N = 50
rng = period_range("1/1/1990", periods=N, freq="H")
ts = Series(np.random.randn(N), index=rng)
ts.iloc[15:30] = np.nan
dates = date_range("1/1/1990", periods=N * 3, freq="37min")
result = ts.asof(dates)
assert notna(result).all()
lb = ts.index[14]
ub = ts.index[30]
result = ts.asof(list(dates))
assert notna(result).all()
lb = ts.index[14]
ub = ts.index[30]
pix = PeriodIndex(result.index.values, freq="H")
mask = (pix >= lb) & (pix < ub)
rs = result[mask]
assert (rs == ts[lb]).all()
ts.iloc[5:10] = np.nan
ts.iloc[15:20] = np.nan
val1 = ts.asof(ts.index[7])
val2 = ts.asof(ts.index[19])
assert val1 == ts[4]
assert val2 == ts[14]
# accepts strings
val1 = ts.asof(str(ts.index[7]))
assert val1 == ts[4]
# in there
assert ts.asof(ts.index[3]) == ts[3]
# no as of value
d = ts.index[0].to_timestamp() - offsets.BDay()
assert isna(ts.asof(d))
# Mismatched freq
msg = "Input has different freq"
with pytest.raises(IncompatibleFrequency, match=msg):
ts.asof(rng.asfreq("D"))
def test_errors(self):
s = Series(
[1, 2, 3],
index=[Timestamp("20130101"), Timestamp("20130103"), Timestamp("20130102")],
)
# non-monotonic
assert not s.index.is_monotonic_increasing
with pytest.raises(ValueError, match="requires a sorted index"):
s.asof(s.index[0])
# subset with Series
N = 10
rng = date_range("1/1/1990", periods=N, freq="53s")
s = Series(np.random.randn(N), index=rng)
with pytest.raises(ValueError, match="not valid for Series"):
s.asof(s.index[0], subset="foo")
def test_all_nans(self):
# GH 15713
# series is all nans
# testing non-default indexes
N = 50
rng = date_range("1/1/1990", periods=N, freq="53s")
dates = date_range("1/1/1990", periods=N * 3, freq="25s")
result = Series(np.nan, index=rng).asof(dates)
expected = Series(np.nan, index=dates)
tm.assert_series_equal(result, expected)
# testing scalar input
date = date_range("1/1/1990", periods=N * 3, freq="25s")[0]
result = Series(np.nan, index=rng).asof(date)
assert isna(result)
# test name is propagated
result = Series(np.nan, index=[1, 2, 3, 4], name="test").asof([4, 5])
expected = Series(np.nan, index=[4, 5], name="test")
tm.assert_series_equal(result, expected)