115 lines
3.8 KiB
Python
115 lines
3.8 KiB
Python
from datetime import datetime
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Period,
|
|
Series,
|
|
date_range,
|
|
period_range,
|
|
to_datetime,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestCombineFirst:
|
|
def test_combine_first_period_datetime(self):
|
|
# GH#3367
|
|
didx = date_range(start="1950-01-31", end="1950-07-31", freq="M")
|
|
pidx = period_range(start=Period("1950-1"), end=Period("1950-7"), freq="M")
|
|
# check to be consistent with DatetimeIndex
|
|
for idx in [didx, pidx]:
|
|
a = Series([1, np.nan, np.nan, 4, 5, np.nan, 7], index=idx)
|
|
b = Series([9, 9, 9, 9, 9, 9, 9], index=idx)
|
|
|
|
result = a.combine_first(b)
|
|
expected = Series([1, 9, 9, 4, 5, 9, 7], index=idx, dtype=np.float64)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_combine_first_name(self, datetime_series):
|
|
result = datetime_series.combine_first(datetime_series[:5])
|
|
assert result.name == datetime_series.name
|
|
|
|
def test_combine_first(self):
|
|
values = tm.makeIntIndex(20).values.astype(float)
|
|
series = Series(values, index=tm.makeIntIndex(20))
|
|
|
|
series_copy = series * 2
|
|
series_copy[::2] = np.NaN
|
|
|
|
# nothing used from the input
|
|
combined = series.combine_first(series_copy)
|
|
|
|
tm.assert_series_equal(combined, series)
|
|
|
|
# Holes filled from input
|
|
combined = series_copy.combine_first(series)
|
|
assert np.isfinite(combined).all()
|
|
|
|
tm.assert_series_equal(combined[::2], series[::2])
|
|
tm.assert_series_equal(combined[1::2], series_copy[1::2])
|
|
|
|
# mixed types
|
|
index = tm.makeStringIndex(20)
|
|
floats = Series(np.random.randn(20), index=index)
|
|
strings = Series(tm.makeStringIndex(10), index=index[::2])
|
|
|
|
combined = strings.combine_first(floats)
|
|
|
|
tm.assert_series_equal(strings, combined.loc[index[::2]])
|
|
tm.assert_series_equal(floats[1::2].astype(object), combined.loc[index[1::2]])
|
|
|
|
# corner case
|
|
ser = Series([1.0, 2, 3], index=[0, 1, 2])
|
|
empty = Series([], index=[], dtype=object)
|
|
result = ser.combine_first(empty)
|
|
ser.index = ser.index.astype("O")
|
|
tm.assert_series_equal(ser, result)
|
|
|
|
def test_combine_first_dt64(self):
|
|
s0 = to_datetime(Series(["2010", np.NaN]))
|
|
s1 = to_datetime(Series([np.NaN, "2011"]))
|
|
rs = s0.combine_first(s1)
|
|
xp = to_datetime(Series(["2010", "2011"]))
|
|
tm.assert_series_equal(rs, xp)
|
|
|
|
s0 = to_datetime(Series(["2010", np.NaN]))
|
|
s1 = Series([np.NaN, "2011"])
|
|
rs = s0.combine_first(s1)
|
|
|
|
xp = Series([datetime(2010, 1, 1), "2011"], dtype="datetime64[ns]")
|
|
|
|
tm.assert_series_equal(rs, xp)
|
|
|
|
def test_combine_first_dt_tz_values(self, tz_naive_fixture):
|
|
ser1 = Series(
|
|
pd.DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
|
|
name="ser1",
|
|
)
|
|
ser2 = Series(
|
|
pd.DatetimeIndex(["20160514", "20160515", "20160516"], tz=tz_naive_fixture),
|
|
index=[2, 3, 4],
|
|
name="ser2",
|
|
)
|
|
result = ser1.combine_first(ser2)
|
|
exp_vals = pd.DatetimeIndex(
|
|
["20150101", "20150102", "20150103", "20160515", "20160516"],
|
|
tz=tz_naive_fixture,
|
|
)
|
|
exp = Series(exp_vals, name="ser1")
|
|
tm.assert_series_equal(exp, result)
|
|
|
|
def test_combine_first_timezone_series_with_empty_series(self):
|
|
# GH 41800
|
|
time_index = date_range(
|
|
datetime(2021, 1, 1, 1),
|
|
datetime(2021, 1, 1, 10),
|
|
freq="H",
|
|
tz="Europe/Rome",
|
|
)
|
|
s1 = Series(range(10), index=time_index)
|
|
s2 = Series(index=time_index)
|
|
result = s1.combine_first(s2)
|
|
tm.assert_series_equal(result, s1)
|